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1. Introduction 

I'm not sure why you're reading this book. It's taken me a while to 
discover why I'm writing it. Let's examine the title: Programming a 
Problem-Oriented-Language. The key word is programming. I've 
written many programs over the years. I've tried to write good 
programs, and I've observed the manner in which I write them rather 
critically. My goal has been to decrease the effort required and 
increase the quality produced.  

In the course of these observations, I've found myself making the 
same mistakes repeatedly. Mistakes that are obvious in retrospect, 
but difficult to recognise in context. I thought that if I wrote a 
prescription for programming, I could at least remind myself of 
problems. And if the result is of value to me, it should be of value to 
others; if what I say is new to you, you may learn something of value; 
if I cover familiar ground, you at least get a new point of view.  

I've also been distressed at the lack of concern from others about 
problems I consider significant. It amounts to a general indifference 
to quality; a casual attitude of confidence that one's programs are 
pretty good, in any case as good as necessary. I'm convinced this 
confidence is misplaced. Moreover this attitude is reinforced by the 
massive trend to high-level languages and a placid acceptance of 
their inefficiencies: What's the use of designing a really good 
algorithm if the compiler's going to botch it up anyway?  

So I've written a book about programming. I have no great taste for 
debating over a one-way communication link and no real interest in 
convincing you that I'm right in what I say. So you'll probably find that 
I'm being brusk. I'm quite likely to state bluntly something you may 
take issue with. Please do! My intention is to document an approach 
I've found useful, and perhaps to stimulate critical interest in 
programming. If you care enough to take issue, I'm delighted.  

Back to the title. What about Problem-Oriented-Language? I didn't 
start out to write about that; and I'm not sure that I'm qualified to do 
so. But I discovered that in order to justify what I was doing and 
identify the appropriate circumstances for doing it, the term became 
essential.  
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A problem-oriented-language is a language tailored to a particular 
application. To avoid that uniquely clumsy term, I'll usually substitute 
application language as synonymous. Very often such a language 
isn't recognised for what it is. For instance, if your program reads a 
code in column 80 to identify an input card, you are implementing an 
application language. A very crude one, a very awkward one; mostly 
because you hadn't given the matter any thought. Recognising the 
problem, I'm sure you can design a better solution. This book will 
show you how.  
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1.1 The Basic Principle 

We have a large number of subjects to talk about. I'm going to throw 
before you a lot of techniques that you may be able to use. This is 
basically the result of the nature of a digital computer: a general 
purpose tool for processing information.  

A computer can do anything. I hope that your realize that, providing 
you allow me to define "anything", I can prove this. I mean real, 
incontrovertible, mathematical-type proof. A computer cannot do 
everything. I can prove this, too. But most important, with only you 
and I to program it, a computer can not even do very much. This is of 
the nature of an empirical discovery.  

So to offer guidance when the trade-offs become obscure, I am going 
to define the Basic Principle: 

 Keep it Simple 

As the number of capabilities you add to a program increases, the 
complexity of the program increases exponentially. The problem of 
maintaining compatibility among these capabililties, to say nothing of 
some sort of internal consistency in the program, can easily get out of 
hand. You can avoid this if you apply the Basic Principle. You may be 
acquainted with an operating system that ignored the Basic Principle.  

It is very hard to apply. All the pressures, internal and external, 
conspire to add features to your program. After all, it only takes a 
half-dozen instructions; so why not? The only opposing pressure is 
the Basic Principle, and if you ignore it, there is no opposing pressure.  

In order to help you apply the Basic Principle, I'm going to tell you 
how many instructions you should use in some routines. And how 
large a program with certain capabilities should be. These numbers 
are largely machine independent; basically they measure the 
complexity of the task. They are based upon routines I have used in 
my programs, so I can substantiate them. Let me warn you now that 
I'll be talking about programs that will fit comfortably in 4K words of 
core.  

The Basic Principle has a corollary: 
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 Do Not Speculate! 

Do not put code in your program that might be used. Do not leave 
hooks on which you can hang extensions. The things you might want 
to do are infinite; that means that each one has 0 probability of 
realization. If you need an extension later, you can code it later - and 
probably do a better job than if you did it now. And if someone else 
adds the extension, will they notice the hooks you left? Will you 
document that aspect of your program?  

The Basic Principle has another corollary: 

 Do It Yourself! 

Now we get down the the nitty-gritty. This is our first clash with the 
establishment. The conventionsl approach, enforced to a greater or 
lesser extent, is that you shall use a standard subroutine. I say that 
you should write your own subroutines.  

Before you can write your own subroutine, you have to know how. 
This means, to be practical, that you have written it before; which 
makes it difficult to get started. But give it a try. After writing the same 
subroutine a dozen times on as many computers and languages, 
you'll be pretty good at it. If you don't plan to be programming that 
long, you won't be interested in this book.  

What sort of subroutines do you write for yourself? I have acquired 
respect for SQRT subroutines. They're tricky things; seem to attract a 
lot of talent. You can use the library routine to good advantage. Input 
subroutines now. They seem to have crawled out from under a rock. I 
somehow can't agree that the last word was said 15 years ago when 
FORMAT statements were invented.  

As I will detail later, the input routine is the most important code in 
your program. After all, no one sees your program; but everyone sees 
your input. To abdicate to a system subroutine that hasn't the 
slightest interest in your particular problem is foolish. The same can 
be said for output subroutine and disk-access subroutine.  

Moreovere, the task is not that great as to deter you. Although it takes 
hundreds of instructions to write a general purpose subroutine, you 
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can do what you need with tens of instructions. In fact, I would advise 
against writing a subroutine longer that a hundred instructions.  

So if you want to read double-precision, complex integers; don't rely 
on the COBOL input subroutine, or wait till the manufacturer revises it. 
It's a lot easier to write your own.  

But suppose everyone wrote their own subroutines? Isn't that a step 
backward; away from the millenium when our programs are machine 
independent, when we all write in the same language, maybe even on 
the same computer? Let me take a stand: I can't solve the problems of 
the world. With luck, I can write a good program.  
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1.2 Preview 

I'm going to tell you how to write a program. It is a specific program; 
that is, a program with a specific structure and capabilities. In 
particular, it is a program that can be expanded from simple to 
complex along a well defined path, to handle a wide range of 
problems, likewise varying from simple to complex. One of the 
problems it considers is exactly the problem of complexity. How can 
you control your program so that it doesn't grow more complicated 
than your application warrants?  

First I'll define "input", and mention some general rules of 
programming that apply to all programs, whether they have input or 
not. Actually we will be almost exclusively concerned with input, so 
I've not much to say about programs lacking input.  

By admitting input, a program acquires a control language by which a 
user can guide the program through a maze of possibilities. Naturally, 
this increases the flexibility of the program, it also requires a more 
complex application to justify it. However it is possible to achieve a 
considerable simplification of the program, by recognising that it 
needs a control language as a tool of implementation.  

The next step is a problem-oriented-language. By permitting the 
program to dynamically modify its control language, we mark a 
qualitative change in capability. We also change our attention from 
the program to the language it implements. This is an important, and 
dangerous, diversion. For it's easy to lose sight of the problem amidst 
the beauty of the solution.  

In a sense, our program has evolved into a meta-language, which 
describes a language we apply to the application. But having 
mentioned meta-language, I want to explain why I won't use the term 
again. You see things get pretty complicated, particularly on a 
philosophic level. To precisely describe our situation requires not 2 
levels of language - language and meta-language - but a least 4 levels. 
To distinguish between these levels requires subtle arguments that 
promote not clarity but confusion. Moreover, the various levels can 
often be interchanged in practice, which reduces the philosophic 
arguments to hair-splitting.  
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A problem-oriented-language can express any problem I've 
encountered. And remember, we're not concerned with the language, 
but with the program that makes the language work. By modifying the 
language we can apply the same program to many applications. 
However there are a class of extensions to the language that 
constitute another qualitative change. They don't increase the 
capacity of the program, but they increase the capability of the 
language. That is, they make the language more expressive. We will 
consider some such extensions in Chapter 8. I gathered them 
together chiefly because they share the common property that I don't 
quite comprehend their potential. For example, I think the language 
applies the concepts of English.  

Finally, I want to describe a process whereby you can implement this 
program in machine language. That is, a bootstrap technique whereby 
a basic program can modify and expand itself.  

I hope you find the ideas I describe of value to you. In particular, I 
hope that you will agree that the program I describe has a certain 
inevitability; that it must do certain things, it must do them in a certain 
order, and that a certain set of conventions yield an optimal solution.  

I've gone to some lengths to simplify. I hope that you don't find too 
many violations of the Basic Principle, for it's much easier to 
elaborate upon a program than it is to strip it to basics. You should 
feel free to build upon my basic routines, provided that you recognise 
that you are adding a convenience. If you confuse what is expedient 
with what is necessary, I guarantee your program will never stop 
growing.  

You will notice a lack of flow-charts. I've never liked them, for they 
seem to include a useless amount of information - either too little or 
too much. Besides they imply a greater rigidity in program structure 
than usually exists. I will be quite specific about what I think you 
should do and how you should do it. But I will use words, and not 
diagrams. I doubt that you would give a diagram the attention it 
deserved, anyway. Or that I would in preparing it.  
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2. Programs without input 

The simplest possible program is one that has no input. That is a 
somewhat foolish statement, but if you'll give me a chance to explain 
we can establish some useful definitions.  

First consider the word "input". I want to use it in a specific sense: 

 Input is information that controls a program. 

In particular, I do not consider as input: 

 Moving data between media within the computer. For instance, 
o copying tape onto disk, or disk into core. 

 Reading data into the computer. This is really a transfer 
between media: 

o from card to core. 

However, data very often has input mixed with it - information that 
identifies or disposes of the data. For example, a code in col. 80 might 
identify a card. It is input, the rest of the card probably data.  

Many programs have input of a kind I shall disregard: operating 
systems use control cards to specify which files to assign, which 
subroutines to collect, etc. Such information is definitely input to the 
operating system. Although it may affect the operation of your 
program, ignore it because it is not under your control - unless your 
program is the operating system itself.  

In order to sharpen your recognition of input, let me describe a 
program that has input. Consider a program that fits a smooth curve 
through measured data points. It needs a lot of information in order to 
run: the number of data points, the spacing between points, the 
number of iterations to perform, perhaps even which function to fit. 
This information might be built into the program; if it is not, it must be 
supplied as input. The measured data itself, the object of the entire 
program, is not input; but must be accompanied by input in order to 
to intelligible.  

A program that has no input may be extremely complex. Lacking 
input simply means the program knows what to do without being told. 
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That built into the code is all the information needed to run. If you are 
willing to re-compile the program, you can even modify it without 
input.  

But I'll be viewing programs from the input side. I'll be ranking 
programs according to the complexity of their input and I plan to 
demonstrate that a modest increase in the complexity of input can 
provide a substantial decrease in the complexity of the program. 
From this point of view, a program with no input is simple.  

Since I'm going to be talking about input, a program without input 
leaves me nothing to talk about. But I want to make some points 
about programs in general, so I'll make them here. For one thing, we 
will be climbing a tree. When we reach the higher branches we'll have 
enough trouble keeping our balance without worrying about the roots.  



– 17 – 
 

2.1 Choosing a language 

We shall be less interested in computer language than most 
programmers. For 3 reasons: First, we will eventually define our own 
application-oriented language. How we implement that language is of 
lesser concern. Second, you probably aren't in a position to pick a 
language. Your installation probably has reduced your choice to nil. 
Third, we won't be talking about problems at the language level.  

This last comment deserves elaboration. I assume that you are 
already a competent programmer. I'm not interested in teaching you 
how a computer works, or how a language conceals the computer. I 
want to talk about problems common to all programs in a machine-
independent and language-independent manner. I will leave to you the 
details of implementation. I am not going to write a program, I am 
going to show you how to write a program.  

I hope that you are a good enough programmer to think in 
computerese. That is, as someone discusses their application, you 
interpret it in terms of computer operations: a loop here, a calculation 
there, a decision . . . The details are largely irrelevant, the gross 
structure of the program is of concern.  

As you put more thought into the problem, you begin to relate it to 
your particular machine: this data comes off tape, that loop is stopped 
by . . ., this is really a 3-way branch. you modify the problem as 
required by your particular hardware configuration.  

Finally, you must translate your program into a particular language. 
You encounter a new class of problem: your FORTRAN won't run that 
loop backwards, COBOL doesn't have a 3-way branch, you couldn't 
access the data that way. . . Current languages put more constraints 
on this last coding process than they should.  

I'll have a bit more to say about languages, but mostly we'll stay at the 
most abstract level - talking computerese. We won't be talking in 
meta-language exclusively. I may tell you to load an index-register or 
to jump on negative and you'll have to translate that into the 
equivalent for your computer and language.  

Now let's look at the major failing of higher-level languages. In 
attempting to achieve machine-independence and to be applicable to 
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a wide range of applications, they only give you acess to a fraction of 
the capabilities of your computer. If you compare the number of loop 
control instructions on your computer to the number of loop 
constructs in your language, you'll see what I mean.  

Let me indulge in a 1-sentence characterization of 3 popular 
languages to illustrate their restricted capabilities: 

 FORTRAN is great at evaluating complicated algebraic 
expressions.  

 COBOL is great at processing packed decimal data.  

 ALGOL is great at providing loops and conditional statements. 

Each language can be very efficient at its sort of job. But if you want 
conditional loops involving complicated decimal expressions you 
have a problem.  

We are going to be concerned with efficiency. We are going to do 
some things that if we don't do efficiently, we can't do at all. Most of 
these things will not fit in the framework of a higher-level language. 
Some will; others will demand controlled use of the hardware that a 
compiler doesn't permit. For example, upon entering a FORTRAN 
subroutine it may save the registers it uses. If you didn't need to save 
them you've wasted time and space. An ALGOL subroutine may 
expect registers available that you have reserved; then you have to 
save them. It may well cost you more effort to interface with the 
compiler than it saves you in return.  

Moreover, none of these languages are very good at moving things 
around. Most statements are data transfers - count them in your latest 
program. There is a profound philosophical truth concealed in how 
much we can accomplish by moving numbers around. If we can move 
several things with one instruction, or put the same register several 
places - we can't afford not to.  

You will have to code in assembler! Not the whole program, if you 
insist, but the important parts that we'll be concentrating on. You 
might be able to do some of these in FORTRAN, but it simply isn't 
worth the effort. I'll show you where higher-level subroutines can go, 
and I think you'll agree there is good reason to restrict them to that 
function.  
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I recognise the drawbacks of assembler and chafe at them as much 
as anyone. I don't like to punch and debug 10 times as many cards 
either. But I will in order to get the performance I need. By the way, I 
will use the word "compiler" to include assembler; we will compile an 
assembly language program.  

Later I'll show you how to write a program in a forgotten language: 
machine language. By that I mean sitting at the console and entering 
absolute, binary instructions with the switches. Depending on the 
hardware and software available, and the nature of your application, it 
may just be the best language of all.  
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2.2 Choosing a computer 

Of course I don't expect that you're in a position to choose a 
computer. Nor am I going to discuss hardware at all. But I do have a 
mental image of the kind of computer, and explaining it may help you 
understand some of my comments.  

Most applications can be programmed very nicely on a small 
computer: say 4K of 16-bit words with a typical instruction set, 
floating-point hardware if needed. If, that is, the computer is 
augmented with random access secondary memory, which I will call 
disk. The capacity of disk is unimportant, even a small disk providing 
plenty for our purposes, and is determined by the application. 
However, it is important to be able to copy the disk onto another disk, 
or tape, for back-up. Thus I envisage a small computer with 2 
secondary memories, and of course a keyboard or card-reader and 
printer or scope for input and output.  

Instead of running applications in serial on a small computer, you can 
run them in parallel on a large one. I see no advantage, for the amount 
of core and disk you can afford to use for a single application is about 
that available on a small computer. You don't gain speed, you suffer 
from a complex operating system, and you have a enormous capital 
investment. But the configuration I have in mind remains the same: 
4K of core, secondary memory and input/output device.  
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2.3 Arrangement and formatting 

Now I'm going to tell you how to write a program. Independent of 
language or computer. Things you ought to be doing already, but 
probably aren't because noone ever told you to. Little things. But if 
you don't do them you won't have a good program; and we're going to 
write a good program.  

Remember the Basic Principle! If you didn't read the Introduction, do 
it now.  

Declare all variables. Even in FORTRAN when you don't have to. 
Everyone likes to know what parameters you are using, presumably 
need to use; likes to count them, to see if they could use fewer; is 
annoyed if you slip one in without mentioning it.  

Define everything you can before you reference it. Even in FORTRAN 
when you don't have to. Why not? You don't like to read a program 
backwards either. 'Everything you can' means everything except 
forward jumps. You better not have many forward jumps.  

Make variables as GLOBAL as possible. Why not? You can save some 
space and clarify your requirements. For instance, how many Is, Js 
and Ks do you need? In most cases a single copy in COMMON would 
suffice (you have to declare them, remember, and may as well put 
them in COMMON); you can redefine it locally if you must; and it is of 
interest that you must.  

Indent! High-level languages, even modern assemblers, fail to insist 
that you start in column x. But you do! The unbelievable appeal of a 
straight left margin! Paper is 2-dimensional. Use it! If you indent all 
statements inside a loop, it's obvious at a glance the extent of the 
loop. If you indent conditionally executed statements you'll find that 
nested conditions sort themselves out - automatically. If you indent 
little statements you wish you didn't have to include (I = I) you'll find 
they intrude less as you glance through the listing. Always indent the 
same amount, 3 spaces/level is good. Be consistant and be accurate. 
Sloppy indenting is obvious.  
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2.4 Mnemonics 

You will find as you read, that I have strong opinions on some 
subjects and no opinion of others. Actually I have strong opinions on 
all, but sometimes I can't make up my mind which to express. 
Fortunately it leaves you some decisions to make for yourself.  

Use words with mnemonic value. Unfortunately what is mnemonic to 
you may not be mnemonic to me; and I'm the one who judges. Also 
unfortunately, mnemonic words tend to be long, which conflicts with:  

Use short words. You don't want to type long words, and I don't want 
to read them. In COBOL this means avoid dashes and avoid 
qualification, though both can be useful upon occassion.  

So let me suggest a compromise: abbreviate in some consistant 
fashion and stick to your own rules. I can probably figure out the rules 
you're using. You might even mention them in a comment.  

Use words with the correct grammatical connotations: nouns for 
variables, verbs for subroutines, adjectives for . . . Do not use clever 
words (GO TO HELL). Their cuteness wears off very fast and their 
mnemonic value is too subjective. Besides they offer an unwanted 
insight into your personality.  

Use comments sparingly! (I bet that's welcome.) Remember that 
program you looked through - the one with all the comments? How 
helpful were all those comments? How soon did you quit reading 
them? Programs are self-documenting, even assembler programs, 
with a modicum of help from mnemonics. It does no good to say: 

 LA B . Load A with B 

In fact it does positive bad: if I see comments like that I'll quit reading 
them - and miss the helpful ones.  

What comments should say is what the program is doing. I have to 
figure out how it's doing it from the instructions anyway. A comment 
like this is welcome: 

 COMMENT SEARCH FOR DAMAGED SHIPMENTS 
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Mnemonics apply to variables and labels (You can even get 
mnemonic value in FORTRAN statement numbers). Where possible 
you should apply them to registers also. You may do well to assign 
several names to the same entity, to indicate its current use. However, 
don't waste effort naming things that don't need names. If you need a 
counter, use I, J, K; to assign a big name (EXC-CNTR) to an 
insignificant variable is no help.  
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2.5 Routines and subroutines 

There are two words I need to establish precise definitions for: A 
subroutine is a set of instructions that return from whence they came. 
A routine is a set of instructions that return to some standard place.  

To put it another way, you jump to a routine, you call a subroutine. 
The difference is retained in higher-level languages: GO TO versus 
CALL or ENTER.  

So what? Subroutines suffer from nesting. If you call a subroutine 
from within a subroutine you must somehow save the original return 
address. I'm sure you can rattle-off a dozen hardware/software ways 
of doing this. They're all expensive.  

If you jump somewhere, not intending to come back, you can save 
trouble, time and space. But only if you really never come back. To 
simulate a subroutine call is worse than ever.  

Higher-level languages conceal this by nesting automatically. The 
best solution is to nest if you must, but only when you must, and 
never to save the same address more than once. That is, upon 
entering a subroutine, save the return address if you intend to call 
other subroutines. When you're finally ready to return, then un-nest.  

Obvious? Perhaps. But it's usually done wrong! Sometimes the 
problem only arises with recursive subroutine calls; depending on 
hardware. It always arises with re-entrant programming.  

So we can get in and out of routines and subroutines. How do we 
pass parameters? Again, there are as many answers as computers, 
languages and programmers. We shall standardize: you pass what 
you can in registers; the rest via a push-down stack.  

It is extremely important for routines to be able to communicate 
efficiently. I hope you are aware of the cost of a FORTRAN subroutine 
call. I consider it a basic flaw in the language. We will be moving 
among so many subroutines that failing to minimize overhead could 
easily halve our running speed.  
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You must also consider the value of a subroutine. It isolates a logical 
function and it eliminates repeated instructions. The first is 
acceptable only at minimal cost. The second only if space is saved: a 
1-instruction subroutine is ridiculous; a 2-instruction must be called 
from 3 places to break even. Be careful!  

Finally, it is important to use registers efficiently. Assign registers for 
specific purposes and use them consistently. Re-assign registers if 
you must to avoid conflicts. Do not move data from one register to 
another; see that it is where it belongs in the first place.  

When I say register, I'm obviously thinking assembler. However, you 
will have to simulate the function of registers with subscripts, etc. in 
other languages, and the same considerations apply.  
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3. Programs with input 

A program without input is a program with a single task. A program 
with input may have many tasks, which it will perform as directed by 
its input. Thus I consider input to be control information, and the 
control information to define a control language.  

We shall have a problem in this chapter, for we are discussing a loop. 
Each element of the loop depends on its predecessor and successor, 
and we have nowhere to start. I have done the best I could, but am 
obliged to refer to things before I define them. Especially in the next 
section where I try to justify some of the details we'll encounter 
immediately after.  

This chapter is full of details, more than I anticipated when I started it. 
Although I'm surprised there's so much to say, I think it's all of value. I 
only caution you not to get lost in the details; the structure, the 
concept of the program are what is important.  

To set the stage, let me briefly outline how our program must operate. 
You are sitting at a keyboard typing input. You type a string of 
characters that the computer breaks into words. It finds each word in 
a dictionary, and executes the code indicated by the dictionary entry, 
perhaps using parameters also supplied by the entry. The process of 
reading words, identifying them and executing code for them is 
certainly not unusual. I am simply trying to systematize the process, 
to extract the inevitable functions and see that they are efficiently 
performed.  
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3.1 Nouns and verbs 

I've mentioned the dictionary and we'll soon examine the details 
required to implement it. But first I'd like to talk a bit about individual 
entries to try and give you a feel for what we're doing.  

We're going to read words from your input, find them in the dictionary, 
and execute their code. A particular kind of word is a literal, a word 
that identifies itself: 

 1 17 -3 .5 

We won't find such words in the dictionary, but we can identify them 
by their appearance. Such words act as if they were in the dictionary, 
and the code executed for them places them on a push-down stack.  

Other words act upon arguments found on this stack, for example: 

 + add the last 2 numbers placed on the stack, leave the sum 
there.  

 , type the number on top of the stack, and remove it from the 
stack. 

If we type a phrase such as: 

 1 17 + , 

We are saying: put 1 onto the stack, 17 onto the stack, add them, and 
type their sum. Each word performs its specific, limited function; 
independently of any other word. Yet the combination of words 
achieves something useful. In fact if we type: 

 4837 758 + -338 + 23 + 4457 + -8354 + , 

we can even do something non-trivial: each number is added to the 
sum of its predecessors, and the result typed.  

This is basically the value of our program. It lets us combine simple 
operations in a flexible way to accomplish a task.  
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Let's look more closely at the words we used above. They fall into 2 
distinct classes; English even provides names for them: 

 Nouns place arguments onto the stack.  

 Verbs operate upon arguments on the stack. 

All words cause code to be executed. However in the case of nouns, 
the code does very little: simply place a number on the stack. Verbs 
are considerably more varied in their effects. They may do as little as 
add 2 arguments, or as much as type out a result - which requires a 
great deal of code.  

In effect, nouns place arguments onto the stack in anticipation of 
verbs that will act upon them. The word anticipation is a good one. In 
order to keep our verbs simple, we promise that their arguments are 
available. We could define a verb that reads the next word and uses it 
as an argument; but in general we don't. It is not the business of a 
verb to provide its own arguments; we use nouns to provide 
arguments before we execute the verb. In fact, this substantially 
simplifies our program.  

We can extend the characterization of entries a little further. Verbs 
have different numbers of arguments: 

 Unary verbs modify the number on the stack.  

 Binary verbs combine 2 arguments to leave a single result. 

Arithmetic operations are binary, arithmetic functions are usually 
unary. However, there are more verbs than we can usefully catagorize. 
For example, the verb "," that types the stack is not unary, since it 
removes the number from the stack. Although it does have a single 
argument.  

Another way of distinguishing verbs is: 

 Destructive verb removes its arguments from the stack.  

 Non-destructive verb leaves its arguments on the stack. 

Unary and binary verbs, as well as the type verb ",", are destructive. 
The verb DUP, which I define to duplicate the top of the stack, is non-
destructive. In general verbs are destructive. In fact, I deliberately 
define verbs to be destructive in order to simplify the task of 
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remembering which are and which aren't. I recommend that you do 
the same.  

Literals are nouns. We can define other words as nouns; words that 
use their parameter field to place numbers onto the stack: 

 Constants place the contents of their parameter field onto the 
stack.  

 Variables place the address of their parameter field onto the 
stack. 

For example, if PI is a constant, it places 3.14 onto the stack. Thus: 

 1. PI 2. * / , 

reads: place 1. onto the stack, place 3.14 onto the stack, place 2. onto 
the stack, multiply (2. and PI), divide (1. by 2PI), and type. Constants 
are particularly useful when you're using code numbers. It lets you 
give names to numbers that might otherwise be hard to remember.  

However the most important nouns by far are literals and variables. A 
variable gives a name to a location and not to a value, as elementary 
programming texts laboriously explain. However, what higher-level 
languages conceal is that variables may be used in 2 distinct ways: 

 To name a location from which a value is to be taken.  

 To name a location into which a value is to be stored. 

A constant automatically performs the first; and inherently prevents 
the second (you can't store a value into a constant, for you don't 
know where the constant came from). Rather than try to distinguish 
function by context, as compilers do, we shall define 2 verbs that act 
upon variables: 

 @ replace the address on the stack with its contents.  

 = Store into the address on the stack, the value just beneath it 
on the stack. 

Thus if I type, where X is a variable, 

 X @ , 
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I mean: place the address of X onto the stack, fetch its value, and type. 
And if I type, 

 X @ Y @ + , 

I mean: fetch the value of X, the value of Y, add, and type. On the 
other hand, 

 X @ Y = 

will: fetch the address of X, then its value, fetch the address of Y, and 
store the value of X into Y. But if I type 

 X Y = 

I'm saying: fetch the address of X, the address of Y, and store the 
address of X into Y. Maybe this is that I mean to do, it's not 
unreasonable.  

I don't want to belabor the point, for we're getting ahead of ourselves. 
But variables require special verbs, one of which (@) is not ordinarily 
explicit. Incidently, I originally used the word VALUE for @. But the 
verb is used so often it deserves a single character name, and I 
thought @ (at) had some mnemonic value, besides being otherwise 
useless.  

I urge you to adopt the vereb @. Although you can conceal it in 
various ways - we'll discuss one later - it adds needless complication. 
Such a useful verb oughtn't be invisible. Besides it lets you store 
addresses in variables - indirect addressing 

 X Y = Y @ @ , 

reads: store the address of X in Y; place the address of Y on the stack, 
fetch its value (the address of X) fetch its value (the contents of X), 
and type.  

I hope I've given you some idea of how you can put arguments onto 
the stack and act on them with verbs. Although I define constants and 
variables, unary and binary verbs, I hope it's clear that these are only 
examples. You must define the nouns and verbs and perhaps other 
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kinds of words that are useful for your application. In fact, I think that 
is what programming is all about. If you have available a program 
such as I will now describe, once you decide what entries an 
application requires, you'll find it absolutely trivial to code those 
entries, and thus complete your problem.  



– 32 – 
 

3.2 Control loop 

Our program has a structure that is easy to miss: it is a single loop. 
However, it is a loop that is diffuse - scattered among all the code in 
the program. Very few instructions are gathered together to form an 
identifiable loop, so the loop warrants some explanation.  

We are going to read a word from the input string, look up that word 
in the dictionary, and jump to the routine it specifies. Each routine will 
return to the top of the loop to read another word. We will be 
discussing many routines and it will be helpful to have a term to 
identify "return to the top of the loop to read another word". I will use 
the word RETURN; you should provide a standard macro or label in 
your program for the same purpose.  

Actually, you accomplish 2 purposes: you mark the end of a routine. 
And you identify the preceeding code as being a routine, as distinct 
from a subroutine. Thus, I use the word RETURN with a totally 
different meaning from the FORTRAN RETURN statement. I shall 
speak of EXITing from a subroutine.  

Included in your control loop should be a check that the parameter 
stack has not exceeded its limits. This is best done after RETURNing 
from a routine, and only needs to be done for routines that use the 
stack. Thus there are 2 possible RETURN points (actually 3).  

The control loop must be efficient. If you count the instructions it 
contains, you measure the overhead associated with your program. 
You will be executing some very small routines, and it's embarrassing 
to find overhead dominating machine use. In particular you don't need 
to check other than the parameter stack.  

One more routine belongs in this section: an error routine. Whenever 
an error is detected, a routine should jump to ERROR which will type 
the offending word and an error message. It will then reset all stacks 
and the input pointer and RETURN normally.  

The problem of how to treat error messages is an important one. We 
are in a position to do a good job: to avoid setting and testing flags; 
to avoid cascading back through subroutine calls. By clearing the 
return stack we eliminate any pending subroutine returns. By not 
returning with an error flag, we avoid having the subroutine have to 
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worry about errors. This simplifies the code, but we must have a 
standard method of handling problems.  

The image of a person at a keyboard in invaluable for this purpose. 
No matter what problem arises, we needn't worry about what to do. 
Pass the buck; ask the user. For example, he types a word not in the 
dictionary. What to do? Ask him: type the word and an error message, 
in this case "?". He tries to add 2 numbers and there's only 1 on the 
stack: type the word and "STACK!". He tries to access a field beyond 
the limit of his memory: type the word and "LIMIT!".  

Of course you want to be careful not to pose the user problems he 
can't solve. Faced with a message "MEMORY PARITY" what can he do 
about it? But he's certainly in a better position than your program to 
take corrective action to most problems. And of course it's up to you 
to decide what situations are problems.  

By the way. Since you don't check the stack until after you executed a 
routine, it will exceed stack limits before you know it. Thus stack 
overflow and underflow should be non-fatal. A good solution is to let 
the parameter stack overflow into the return stack, and underflow into 
the message buffer. The return stack should never underflow.  
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3.3 Word subroutine 

I've described the control loop that will run our program. The first 
thing it does is to read a word; so the first thing we shall discuss is 
how to read a word.  

What is a word? Not a computer word, as I'm sure you realise, 
although we shall have to use the word "word" in that sense. A word 
is a string of characters bounded by spaces. It is extracted from a 
larger string of characters by the routine we are discussing.  

Let me contrast this definition with more conventional input routines. 
FORTRAN formatted input, for example, doesn't speak of words but of 
fields. The meaning of a number is determined by the field it resides 
in; that is, by its position on a card. Since we are not using cards, the 
notion of position becomes clumsy and we replace it with order: The 
order of the words we read is significant, though their position is not. 
We lose, however, the ability to leave a field empty, since we cannot 
recognise an empty word. All our data must be explicit, which is 
probably a good idea but a slow one to learn. Decide now that you will 
not specify input conventions that have optional parameters.  

Very well, let's write the WORD subroutine. It uses the input pointer to 
point at the current position in the source text, the output pointer to 
point at the current position in memory where we will move the word. 
We must move it; partly to align it on a computer-word boundary and 
partly because we may want to modify it.  

Fetch input characters and discard them so long as they're spaces. 
Thereafter deposit them until you find another space. Deposit this 
space and as many others as needed to fill out the last computer-
word. If you have a character-oriented machine you may be amused at 
my insistance on word-alignment. Mainly I'm anticipating the search 
subroutine when we'll want to compare as large a piece of the word as 
possible. If a word holds 6 characters (or even 2) it's much more 
efficient to compare them in parallel than serially, even if you have the 
hardware.  

You may want to set an upper limit on word length. Such a limit 
should include the largest number you will be using. Then the 
question arises as to what to do with a longer word. You might simply 
discard the excess characters, providing you don't plan to dissect the 
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word (Chapter 8). Better, perhaps, that you force a space into the 
word at the limit. That is, break the word into 2 words. Presumably 
something's wrong and you will eventually discover it in attempting to 
process the fragments. However this limit should be large enough - 10 
to 20 characters - so that it does not constitute a real restriction on 
your input. It should also be 1 character less than a multiple of your 
computer-word length, so that you can always include the terminal 
space in the aligned word.  

Words are bounded by spaces. You can probably find objections to 
such a simple definition. For instance, arithmetic expressions often 
do not have spaces between words. We shall discuss this in Chapter 
9. Let me just say that we need to embed periods, dashes, and other 
characters in words in order not to unreasonably restrict our potential 
vocabulary. We'd like these to be words: 

 1,000 1.E-6 I.B.M. B&O 4'3" $4.95 
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3.3.1 Message I/O 

The WORD subroutine presumably examines input characters. Where 
does it get these characters?  

Although it's possible to read cards, I'm going to assume that you 
have a keyboard to type input. Now there are 2 kinds of keyboards, 
buffered and unbuffered. A buffered keyboard stores the message 
until you type an end-of-message character. An unbuffered keyboard 
sends each character as you type it. Your hardware, in turn, may 
buffer input for you or not.  

In any case we may want to examine each character more than once, 
so we want buffered input. Even if you can process characters as they 
arrive, don't. Store them into a message buffer.  

Set aside a 1-line message buffer. Its size is the maximum size of a 
message, either input or output, so if you plan to use a 132 position 
printer make it large enough.  

If you simulate buffering, you should implement a backspace 
character and a cancel message character. For you will make a lot of 
typing errors. If your hardware buffers, but does not provide these 
capabilities, you should do so. This probably means a prescan of the 
input; any other technique gets too complicated, and probably costs 
more in the end.  

Mark the end of an input message with an end-of-message word. This 
is a word bounded by spaces like any other. It may or may not 
coincide with the end-of-message character that you typed, 
depending on your hardware and character set as to whether the 
required spaces can be provided. This word permits ready detection 
of the last word in a message. It will have a specific definition and 
perform a valuable task.  

In addition to a keyboard, you must have some sort of output device: 
a printer or scope. Again it may be buffered or unbuffered. Unlike 
input, we have no reason not to use unbuffered output. However if 
you have several output devices, odds are one is buffered. If so, treat 
them all as buffered, simulating the buffering where needed.  
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We will use the same message buffer for both input and output. My 
motivation is to save space, or rather to increase the utilization of 
space. My reasoning is that input and output are mutually exclusive. 
There are exceptions, but we don't usually read input and prepare 
output simultaneously. At least we never have to.  

However, we do need a switch (1 bit) that states whether the message 
buffer still contains input. The first time (or perhaps everytime) we 
type output, we must reset this switch. We'll use it later.  

We need a receive subroutine that will exit when we have a complete 
input message. Likewise a transmit subroutine that will exit after 
sending an output message. It should await an acknowledgement if 
the hardware provides one. Don't try to overlap transmission of one 
message with preparation of the next. Transmission is so slow and 
preparation so fast that no noticable increase in speed is available. 
And it complicates the program considerably.  
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3.3.2 Moving characters 

I will speak of fetching and depositing characters several times, 
mostly concerned with input and output. For example, the WORD 
subroutine moves characters from the message buffer to a word 
buffer. A simple task conceptually, but a difficult one to implement. 
We would have exactly the same problem moving arrays from place to 
place. But in fact we needn't move arrays and we must move 
characters.  

Let us define 2 entities: an input pointer and an output pointer. For the 
moment you can think of them as index registers, although we will 
have to generalize later. Let's also write 2 subroutines, although your 
hardware may permit them to be instructions: FETCH will load the 
character identified by the input pointer into a register, and advance 
the input pointer; DEPOSIT will store that register at the position 
identified by the output pointer, and advance the output pointer.  

Depending on your computer, FETCH and DEPOSIT can be veery 
simple, or extremely complex. If they require more than 1 instruction, 
they should be subroutines, for we'll use them often. By combining 
them, we can perform a move. However, it's important to be able to 
examine the character before depositing it. A hardware move 
instruction is of little value.  

The input and output pointers use index registers. However, those 
registers should only be used during a move. They should be loaded 
prior to a move and saved after it, for they will be used for a number 
of purposes, and it becomes impractical to store anything there 
permanently.  
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3.4 Decimal conversion 

After isolating and aligning a word from the input string, your control 
loop searches the dictionary for it. If it isn't in the dictionary, it might 
be a number. A number is a special kind of word that doesn't need a 
dictionary entry; by examining the word itself we can decide what to 
do with it. The code executed for a number will place the binary 
representation of the number onto the stack.  

We will discuss the stack in the next section. First let's define a 
number more precisely.  
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3.4.1 Numbers 

It is very hard to state exactly what is a number and what is not. You 
will have to write a NUMBER subroutine to convert numbers to binary, 
and this subroutine is the definition of a number. If it can convert a 
word to binary, that word is a number; otherwise not.  

It is foolish to examine a word to see if it is a number, and then to 
convert the number to binary. Examination and conversion can be 
combined into one process very easily.  

There is one kind of word that invariably is a number: a string of digits 
possible prefixed with a minus. Such numbers are usually converted 
to binary integers. For example: 

 1 4096 -3 7777 0 00100 10000000 6AF2 -B 

are some decimal, octal and hex numbers. The number does not 
specify its base, and a word that may be a hexadecimal number, may 
not be a decimal number.  

So already base has complicated numbers. And beyond simple 
integers are endless other kinds of numbers: fixed-point fractions, 
floating-point fractions double-precision integers, complex fractions, 
etc. And such numbers can have many different formats as words: 
decimal point, implied decimal point, exponents, suffixes. Indeed, the 
same word may represent different numbers depending on its context.  

One of your major tasks will be to decide what kinds of numbers you 
need for your application, how you will format them, and how you will 
convert them. Each kind of number must be uniquely identifiable by 
the NUMBER subroutine, and for each you must provide an output 
conversion routine.  

I suggest the following guidelines: always define integers and 
negative integers; do not permit a prefixed plus sign, it is useless on 
a number and useful as a word; if you have floating-point hardware, 
distinguish floating-point fractions by a decimal point; if you lack 
floating-point hardware, use the decimal point to identify fixed-point 
fractions; don't simulate floating-point; don't permit exponents on 
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fractions. These rules permit a simple NUMBER subroutine which I 
will outline.  

Your application may need special number formats: 

 45'6 for 45 ft. 6 in., an integer  

 1,000,000 an integer  

 $45.69 an integer 

It is not hard to include such numbers in NUMBER, but you cannot 
include all possible formats. Some are incompatible: 

 3'9 for 3 ft. 9 in.  

 12'30 for 12 min. 30 sec. of arc  

 12'30 for 12 min. 30 sec. of time  

 4'6 for 4 shillings 6 pence 

Basic Principle!  

Fixed-point numbers are rarely used. I am convinced of their value 
and would like to show you. With floating-point hardware, they offer 
only the advantage of greater significance, which is probably not 
worth much. However, without floating-point hardware they offer most 
of the capabilities of floating-point numbers, without the very great 
cost of floating-point software. The exception is a wide range of 
exponents.  

I am convinced that exponents are badly misused on computers. Most 
applications use real numbers that can be used on a desk-calculator - 
say between 10

6
 and 10

-6
. Such numbers can be equally well 

represented in fixed-point format. Floating-point is not needed, 
although if hardware is available it might as well be used. There are 
cases, especially in physics, when large exponents occur - 10

43
 or 10

-

13
. But this usually indicates that the proper units have not been 

chosen, or maybe even that logarithms should be used.  

Of course compilers do not implement fixed-point, so people don't 
use it. We are in a position to implement it, and to take advantage of 
the speed possible with fixed-point (integer) instructions. What does a 
fixed-point number look like? Choose the number of decimal places 
you want to use. You may change this from time-to-time, but 
shouldn't mix numbers with different precision. Have your NUMBER 
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subroutine align all numbers (with decimal points) as if you had typed 
exactly that number of decimal places. Thereafter treat that number 
like an integer. That is, if you choose 3 decimal places: 

 1. is considered 1.000 and treated as 1000  

 3.14 is 3.140 and 3140  

 2.71828 is 2.718 and 2718  

 -.5 is -.500 and -500 

I wouldn't bother rounding unless your application demanded it, or 
your hardware made it easy.  

You can add and subtract such numbers without concern; their 
decimal points are aligned. After multiplying 2 numbers, you must 
divide by 1000 to re-align the decimal points. Hardware usually 
facilitates this; the result of a multiply is a double-precision product in 
the proper position for a dividend. Before dividing 2 numbers, you 
must multiply the dividend by 1000 to maintain precision and align the 
decimal points. Again this is easy.  

So providing your words are large enough to store the number of 
decimal places you need, fixed-point arithmetic is easy. If you have 
the hardware, double-precision numbers and operations let you deal 
with larger numbers. Just as easily. And much easier than simulating 
floating-point operations. You may have to write your own square-root 
and trig-function subroutines, but there are approximations available 
that make this not-difficult. And they'll be much faster than the 
equivalent simulated floating-point subroutines.  

Aligning decimal points is easy to visualize, and avoids truncation 
problems. However you may prefer to align binary points. That is, 
instead of 3 decimal places, keep 10 binary places to the right of the 
point. The multiplication and division by 1000 can then be replaced by 
binary shifts - the equivalent for binary - which are much faster. You 
must balance the gain in speed against the problem of alignment 
during conversion (input and output) and truncation during 
multiplication and division being more subtle. And possibly the 
difficulty of explaining your arithmetic.  
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3.4.2 Input conversion 

Now let's discuss the NUMBER subroutine in detail. First, why is it a 
subroutine? If you examine the program I've outlined so far, and even 
the program as augmented by the end of the book, you'll fiind 
NUMBER is called only once - in the control loop. By my own rules 
NUMBER should thus be in-line code. However, I can't bring myself to 
put it in line; the logic in NuMBER is so complex that I want to isolate 
it away from the control loop, to emphasize its logical function - one 
purpose of a subroutine - and to reduce confusion in the control loop 
itself; also I'm never confident that I won't want to call NUMBER from 
some other routine, in fact I have. But I think that such violations of 
programming standards should be explicitly recognised.  

The key to a good NUMBER subroutine is another subroutine that it 
calls. This subroutine has 2 entry points: SIGNED tests the next 
character for minus, sets a switch, zeros number-so-far and falls into 
NATURAL. NATURAL fetches characters, tests that they're digits, 
multiplies the number-so-far by 10 and adds the digit. It repeats until it 
finds a non-digit.  

With this routine, NUMBER can work as follows: set the input pointer 
to the start of the aligned word, call SIGNED. If the stopping character 
is a decimal point, clear counter, call NATURAL to get the fraction, 
and use counter to choose a power-of-ten to convert to a floating or 
fixed-point fraction. In any case, apply SIGNED's switch to make 
number-so-far negative. Exit.  

The routine that calls NUMBER can test the stopping character: 

 If it is a space, the conversion was successful.  

 Otherwise, the word was not a number. 

For example, the following are numbers: 

 0 3.14 -17 -.5 

The following are not: 

 0- 3.14. +17 -.5Z X 6.-3 1.E3 
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In each case NUMBER will stop on a non-space. The number-so-far 
will be correctly converted up to that point (possibly 0) but it is of no 
value.  

SIGNED/NATURAL is a valid subroutine since it is called twice. 
Moreover, if you define other number formats, you'll find it useful. For 
example, the format ft'in 

 After calling SIGNED, if the stopping character is a ' multiply 
number-so-far by 12 and call NATURAL. Then proceed as 
usual, testing for decimal point. 

If you want to verify that "in" are less than 12, you'll want to modify 
this slightly.  

In NATURAL the number-so-far is multipled by 10. Don't use a litereal 
10, but rather define a field (BASE) and store a 10 there as multiplier. 
Then you can change BASE to 8 (or 16) and handle octal numbers. 
You can even change it to 2 to use binary numberes. NATURAL 
should test for digits by comparing them with BASE, thus prohibiting 
9 in an octal number. Hexadecimal input numbers cause an additional 
problem because the digits A-Z do not follow 9 in standard character 
sets. It is thus harder to recognise digits; but this problem is isolated 
in a single place (NATURAL) and is easy to code: 

 An origin must usually be subtracted from a digit to get its 
binary value. If BASE is 16, a different origin is subtracted 
from A-F. 

NUMBER should be efficient, at least in recognising words that are 
not numbers. Not so much because you will use so many numbers, 
but because you will examine many words that aren't numbers. We 
will discuss this further in Chapter 8. It is also important that you 
examine the aligned copy of a word. There are several reasons: to 
avoid trouble with the input pointer, to guarantee a terminal space. 
However this creates a problem: the largest number you will use must 
fit in the aligned word; this may require a longer word than you would 
otherwise use. A number longer than word-size will have its right-
most digits discarded. This will probably not destroy its numeric 
appearance so that no error will be detected; but the conversion will 
be incorrect. This problem is not serious, just be aware of it.  
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3.4.3 Output conversion 

Numeric output is harder than numeric input because there is an extra 
step involved. During input, you multiply the number by 10 and add 
each digit. You can work from left to right. During output, you divide 
by 10, save the remainder for the digit, and repeat with the quotient 
until it becomes 0. You get the digits from right to left, but you want to 
type them from left to right.  

Thus you need somewhere to store the digits temporarily. A good 
place is the far end of the message buffer. The space is unused since 
you presumably have enough space for the number. Of course, you 
can use the stack. If you place a space at the right end of your 
temporary storage, and then deposit the digits from right to left, you 
can use the TYPEB subroutine to finally type the number.  

You'll probably want to handle both negative numbers and fractions. 
Remember the number is negative and work with its absolute value. 
After you're finished, prefix a minus. Fractions require 2 conversion 
loops: one to convert the fraction, counting the number of digits and 
depositing a decimal point; another to convert the integer, stopping 
when the quotient becomes 0. You don't want to test the quotient in 
the fraction.  

If you take the care, and spend a couple of instructions, you can 
improve the appearance of your numbers by: 

 Not typing a decimal point if the number has no decimal 
places.  

 Not typing a leading zero to the left of the decimal point. 

You will probably have several dictionary entries specifying different 
output formats. For example, each kind of number: integer, float, 
complex will need its own output routine. However the actual 
conversion should be done by a single subroutine with parameters to 
distinguish special cases. That is, a single subroutine inverse to the 
NUMBER subroutine. The similarities among different numbers are 
much greater than their differences.  

If you use decimal fixed-point fractions, you already have a field D 
that specifies the number of decimal places. The same field is used to 
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control decimal placement on output. Ordinarily decimal places on 
input and output will be the same. Even with floating-point numbers 
you need that field, since you're rarely interested in full precision 
output.  

If you want to produce reports - carefully formatted columns of 
numbers - you will need to right-justify numbers. That is, to line up 
decimal points. For this you need another parameter F, the width of 
the field in which the number is to be right-justified. It's easy to use: 
after converting the number right-left, compute the number of spaces 
you need and call SPACE. Then call TYPEB. In determining spaces, 
remember that TYPEB always types a space after the number. Thus 
you will always have at least a single space between numbers. If the 
number won't fit in the field you specify, you'll still have that one 
space, and the full number will be typed - fouling up the report format 
- but showing you the bad number.  

Let me acknowledge that if you are going to right-justify numbers you 
can place the digits directly into position from right to left, for you 
know where the rightmost digit must go. But then you must space-fill 
the message buffeer before starting output, and you can't type 
unbuffered output immediately. However, my main objection is that 
you can't compose free-format output. For example, place a number 
in a sentence without extra leading spaces. And very often 
unformatted output is adequate, saving you having to specify field 
sizes you don't care about.  

Depending on your formatting requirements, there are other 
dictionary entries you might want: A SPACE entry, to space the 
number of positions on the stack. It can even space backwards - by 
changing the output pointer - if the stack is negative. This is useful if 
you want to suppress that space provided by TYPEB. A tab entry 
might calculate the amount to space in order to reach a specific 
position on the stack.  
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3.5 Stacks 

We will be using several push-down stacks and I want to make sure 
you can implement them. A push-down stack operates in a last-in 
first-out fashion. It is composed of an array and a pointer. The pointer 
identifies the last word placed in the array. To place a word onto the 
stack you must advance the pointer, and store the word (in that order). 
To take a word off the stack you must fetch the word and drop the 
pointer (in that order). There is no actual pushing-down involved, 
though the effect is the same.  

A stack pointer is an excellent use for an index register, if you have 
enough. Indirect addressing is also a possibility, especially if you 
have an add-to-memory instruction.  
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3.5.1 Return stack 

This stack stores return information. One use is to store the return 
address for subroutines, when subroutine calls use an index register. 
The last-in first-out nature of a stack is exactly the behavior required 
for nested subroutine calls. We will later encounter several other 
kinds of return information that can be stored in the same stack. It is 
important not to attempt to combine the return stack and the 
parameter stack. They are not synchronized. 8 words is probably 
enough space for the return stack.  
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3.5.2 Parameter stack 

This stack is the one I intend when I say simply stack. Numbers, 
constants, variables are all placed on this stack, as will be discussed 
later. This stack is used to pass parameters among routines. Each 
routine can find its arguments there, regardless of how many other 
parameters are present, or how long ago they were placed there. You 
should not implement a parameter stack less than 16 words long.  

A valuable refinement to the parameter stack is to set aside a register 
to hold the word on top of the stack. Several rules must be religously 
observed if this is not to cause trouble: 

 You must never use this register for any other purpose.  

 You must keep this register full; no flag to indicate that it's 
empty. 

If you cannot fulfill these conditions, you're better off with the stack 
entirely in core.  

We need some terminology: 

 You place a word onto then stack, thereby increasing its size.  

 You drop a word from the stack, thereby decreasing its size.  

 The word on top of the stack is called the top word.  

 The word immediately below the top of the stack is called the 
lower word. 

You may need to control the parameter stack from the input. These 
words (dictionary entries) are extremely useful, and illustrate the 
terminology above: 

 DROP drop the top word from the stack.  

 DUP place the top word onto the stack, thereby duplicating it.  

 SWAP exchange the top and lower words.  

 OVER place the lower word onto the stack; move it over the 
top word. 
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3.6 Dictionary 

Every program with input must have a dictionary. Many programs 
without input have dictionaries. However these are often not 
recognised as such. A common 'casual' dictionary is a series of IF . . . 
ELSE IF . . . ELSE IF . . . statements, or their equivalent. Indeed this is 
a reasonable implementation if the dictionary is small (8 entries) and 
non-expandable.  

It is important to acknowledge the function and existence of a 
dictionary, to concentrate it in a single place and to standardize the 
format of entries. A common characteristic of bad programs is that 
the equivalent of a dictionary is scattered all over the program at 
great cost in space, time and apparant complexity.  

The most important property of an entry is one that is usually 
overlooked. Each entry should identify a routine that is to be executed. 
Very often many entries execute the same routine. Perhaps there are 
few routines to choose among. This tends to conceal the importance 
of specifying what is to be done for each entry. By placing the 
address of a routine in each entry, an optimal and standard procedure 
for getting to that code can be designed.  

Significantly, the IF . . . ELSE IF construction has the characteristic of 
associating a routine with each entry.  
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3.6.1 Entry format 

There are 2 distinct ways to organize dictionary entries. The choice 
may depend upon hardware characteristics, but I recommend the 
second. A dominant feature of entries is that they have variable length. 
A part of the entry may be the code to be executed, or parameters or 
an area of storage, all of which may have arbitrary length.  

One possibility is to split an entry into two portions, one of fixed size, 
one of variable size. This permits scanning fixed size entries to 
identify a word and often there are hardware instructions to speed 
this search. A part of the fixed entry can be a link to a variable area; of 
course you choose the fixed size so as to make the link in the nature 
of an overflow - an exception.  

However, since input is relatively small volume (even as augmented in 
definitions), to minimize the time required to search the dictionary 
does not lead to a global optimum. You can gain greater flexibility, a 
simpler allocation of core, and ultimately greater speed by chaining 
the variable-sized entries together directly. This is the organization I 
shall discuss.  

An entry has 4 fields: the word being defined, the code to be executed, 
a link to the next entry and parameters. Each of these warrants 
discussion.  

The format of a word must be decided in conjunction with the word 
input routine. It should have a fixed size which may be smaller than 
that defined by NEXT, but must be a multiple of hardware word size. 
However, more sophisticated applications use the dictionary words to 
construct output messages. Then it is important not to truncate words, 
in which case the word field must have variable length. To mark the 
size of this field the terminal space should be used rather than a 
character count. To handle a variable word field within a variable 
entry, the word should extend in one direction (backwards) and the 
parameter in the other (forwards). Fixed or variable word size requires 
application of the Basic Principle.  

The code field should contain the address of a routine rather than an 
index to a table or other abbreviation. Program efficiency depends 
strongly on how long it takes to get to the code once a entry is 
identified, as discussed in 3.9. However, the small size of your 
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program may permit this address to fit in less space than the 
hardware address field.  

The link field may likewise be smaller than hardware-specified. It 
should contain the absolute location of the next entry rather than its 
distance from the current entry.  

The parameter field will typically contain 4 kinds of information: 

 A number, constant or variable, of variable size. The nature of 
the number is determined by the code it executes.  

 Space in which numbers will be stored - an array. The size of 
the array may be a parameter, or may be implicit in the code 
executed.  

 A definition: an array of dictionary entries representing virtual-
computer instructions; see 3.9.  

 Machine instructions: code compiled by your program which 
is itself executed for this entry. Such data must probably be 
aligned on word boundary, the other need not. 
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3.6.2 Search strategies 

One basic principle applies to dictionary search: it must be 
backwards - from latest to oldest entries. You have perhaps noticed 
that the dictionary is not arranged in any order (ie. alphabetical) other 
than that in which entries are made. This permits the same word to be 
re-defined, and the latest meaning to be obtained. There is no trade-
off valuable enough to compromise this property.  

To identify a word, place it (or its first portion) in a register and 
compare for equality with each entry (or its first portion). An algebraic 
comparison is adequate. Concern is sometimes expressed that 
treating words as floating-point numbers may permit a false equality. 
This has 0 probablity and you can always change the word - ignore it.  

A full-word compare (rather than a character-by-character) should be 
used for speed. A match is usually found on the first portion, and 
extensions may be treated with less efficiency (though still full-word 
compares).  

Fixed-length entries may be scanned with a simple loop. Linked 
entries require an equally simple loop, but usually a slower one. 
However the speed of a linked search can be increased without limit: 
Rather than link each entry to its physical predecessor, link it to a 
predecessor in one of a number of chains. Scramble the word to 
determine which chain it belongs in, both when you enter it and when 
you search for it. Thus, only a fraction of the total dictionary need be 
searched to find the word or assure its absence.  

The number of chains should be a power of 2: 8 will provide a useful 
increase in speed. The scramble technique may be very simple: add 
the first few characters together and use the low-order bits. In order 
to maintain a linked dictionary, the next available location and the 
location of the last entry must be kept. A multiply-chained dictionary 
requires the location of the last entry for each chain: a small price in 
space for a large gain in time.  

However, search time is not a important consideration, and I advise 
against multiple chains unless the dictionary is very large (hundreds 
of entries).  
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3.6.3 Initialization 

The dictionary is built into your program and is presumably initialized 
by your compiler. This is centainly true if you have fixed-size entries. 
Variable-sized entries must be linked together, however, and this can 
be beyond the ability of your compiler, especially if you have multiple 
chains.  

In such a case, it is a simple matter to write a loop that scans the 
dictionary and establishes the links. It should scan the core occupied 
by the dictionary and recognise an entry by some unique flag (7's in 
the link field). It can the pick up the word, scramble it and add it to the 
appropriate chain.  

This is purely temporary code. Although it may call permanent 
subroutines to scramble and link, the initialization code will have no 
further use. Thus it should be placed where it can be overlaid as the 
program proceeds. The message buffer, if large enough, or the disk 
buffer are possibilities.  

Other things may need initializing, particularly any registers that are 
assigned specific tasks. All such duties should be concentrated in 
this one place.  
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3.7 Control language, example 

Applications tend to be complicated before they become interesting. 
But here's a fairly common problem that shows off a control language 
to advantage. Implementation would be tricky, execution woud be 
inefficient; but the program would be simple, and its application 
flexible.  

The problem is to examine a sequential file, select certain records, 
sort them, and list them - in many different ways. Suppose these 
variables define the fields in the record: 

 NAME AGE SALARY DEPT JOB SENIORITY 

Let's define these verbs: 

 LIST SORT EQUAL GREATER LESS 

Each acts upon the temporary file produced by the previous, in 
accordance with the following examples:  

List in alphabetical order all employees in dept 6: 

 6 DEPT EQUAL NAME SORT LIST 

First we choose records with dept = 6 and copy them into a temporary 
file. Then we sort that file by name. Then we list it.  

List twice, by seniority, all employees holding job 17 in dept 3: 

 17 JOB EQUAL 3 DEPT EQUAL SENIORITY SORT LIST LIST 

List, by age, all employees whose salary is greater than $10,000; and 
identify those whose seniority is less than 3: 

 10000 SALARY GREATER AGE SORT LIST 3 SENIORITY LESS 
LIST 

Several comments seem indicated. We can apply a logical "and" by 
using several select verbs in sequence; we cannot use a logical "or". 
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We can sort on several fields, if our sorting technique does not 
unnecessarily re-arrange records. We need 2 more verbs: 

 REWIND END 

to start over with the original file, and to quit.  

Actually many other capabilities could be provided, including the 
ability to locate specific records and modify them. But rather than 
design a particular application, I just want to show how nouns and 
verbs combine to provide great flexibility with a simple program. 
Notice how even such a simple example uses all our facilities: the 
word subroutine, the number subroutine, the dictionary, the stack. 
We're not speculating, we are providing essential code.  
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4. Programs that grow 

So far our dictionary has been static. It contains all the entries you 
need - placed there when the program was compiled. This need not be. 
We can define entries that will cause additional entries to be made 
and deleted. Let me point out why this might be desirable.  

You have a program that controls an application. Based upon the 
words you type, it will do as you direct. In Chapter 3 we provided the 
ability to type out results. Not the sort of results that are the inevitable 
result of the application, but variables that you'd maybe like to see. 
More a conversational sort of output, since it is controlled directly by 
input.  

There are 2 problems with this situation. First, to add an entry to your 
dictionary you must re-compile the program. Clearly, you won't be 
adding many entries - but maybe you won't have to. Second, all your 
entries must be present at the same time. This creates, not so much a 
volume problem, as a complexity problem. If your application is 
complex, it becomes increasingly difficult to make all aspects 
compatible. For instance, to find distinct names for all fields. Third, if 
you find an error in an entry you must recompile the program. You 
have no ability to correct an entry - though of course you could define 
entries to provide that ability.  

If you can create dictionary entries you can accomplish 2 things: You 
can apply your program to different aspects of your application - 
without conflicts and reducing complexity. You can create a 
dictionary entry differently, and thus correct an error. In fact, the 
purpose of your program undergoes a gradual but important change. 
You started with a program that controlled an application. You now 
have a program that provides the capability to control an application. 
In effect, you have moved up a level from language to meta-language. 
This is an extremely important step. It may not be productive. It leads 
you from talking to your application to talking about your application.  

Another way of viewing the transition is the entries in your dictionary. 
At first they were words that executed pieces of code that constituted 
your application program. A purely control function. Now they tend to 
become words that let you construct your application program. They 
constsitute a problem-oriented-language. The distinction need not be 
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abrupt but it is irreversible. You change from an application to a 
system programmer - your system being your application.  

I hesitate to say whether this is good or bad. By now you surely know 
- it depends on the application. I suspect any application of sufficient 
complexity, and surely any application of any generality, must 
develop a specialized language. Not a control language, but a 
descriptive language.  

Some examples: A simulator does not want a control language. It is 
important to be able to describe with great facility the system being 
simulated. A linear-programming problem needs a language that can 
describe the problem. A compiler actually provides a descriptive 
language for use with the programs it compiles. A compiler-compiler 
describes compilers. What is a compile-compiler that can execute the 
compiler it describes and in turn execute the program it compiled? 
That is the question!  

Let me now assume that you have a problem that qualifies for a 
descriptive language. What dictionary entries do you need?  
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4.1 Adding dictionary entries 

Let us now assume that you want to expand your dictionary; that you 
have a sufficiently complex application to justify a specialized 
language. How do you make a dictionary entry?  

Recall the control loop: it reads a word and searches the dictionary. If 
you want to define a word, you must not let the control loop see it. 
Instead you must define an entry that will read the next word and use 
it before RETURNing to the control loop. In effect, it renders the 
following word invisible. It must call the word subroutine, which is 
why it is a subroutine rather than a routine. Let us call such an entry a 
defining entry, its purpose is to define the next word.  

In principle we only need one defining entry, but we must supply as a 
parameter the address of the code to be executed for the entry it 
defines. Remember that 4 fields are required for each entry: the word, 
its code address, a link, and (optionally) parameters. The word we 
obtain from the word subroutine; the link we construct; the 
parameters we take from the stack. We could also take the address 
from the stack, but it's more convenient to have a separate defining 
word for each kind of entry to be constructed. That is, to have a 
separate defining entry for each address we need, that provides the 
address from its parameter field.  

I'm afraid this is confusing. We have one entry that supplies the 
address field of a new entry from its own parameter field. Let's take an 
example; suppose we want to define a constant: 

 0 CONSTANT ZERO 

0 is placed on the stack; the code for the word CONSTANT reads the 
next word, ZERO, and constructs a dictionary entry for it: it 
establishes the link to a previous entry, stores 0 from the stack into 
the parameter field, and from its own parameter field stores the 
address of the code ZERO will execute. This is, presumably, the 
address of code that will place the contents of the parameter field 
onto the stack.  

Thus for each kind of entry we will be making, we need a defining 
entry to supply the code address and do the work. Since all defining 
entries have much in common, you should write an ENTRY subroutine 
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they can call. It should have as parameter the code address, and 
construct all of the new entry except the parameter field, which is 
specialized by the defining entry.  

Other defining entries might be: 

 0 INTEGER I - an integer-size parameter field is initialized to 0; 
its address will be placed on the stack.  

 1. REAL X - a floating-point parameter field is initialized to 1.  

 8 ARRAY TEMP - an 8 word parameter field is cleared to 0; the 
address of its 1st word will be placed on the stack. 

I must emphasize the word "might". Different applications will require 
different defining entries; even the same word might act differently for 
different applications. But you are in a position to define any kind of 
noun you need, and then create as many instances of that noun as 
you like. It is a futile exercise to attempt to establish a universal set of 
nouns. Compiler languages have repeatedly stumbled by not 
providing enough, and no matter how many they provide, someone 
will want one more.  

For example, you might define the following noun: 

 0 8 INDEX J - J is defined to be an index, that varies from 0 to 
8. When executed, it adds its value to the top of the stack. 

If you then define appropriate verbs to advance, test and reset J, you 
can have a powerful indexing facility. Or define: 

 3 VECTOR X 3 VECTOR Y 9 VECTOR Z 

and define arithmetic verbs to implement vector arithmetic: 

 X Z = Z Y + add X and Y, store in Z.  

 X Y Z *C multiply X and Y (outer product), store in Z. 

Anything you need for your application you can define. But you can 
never define everything. Basic Principle!  
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4.2 Deleting entries 

So far we've only discussed defining nouns. Actually you'll be using 
more verbs than nouns, but they require much longer explanations. 
Here is one kind of verb.  

If you can add entries to your dictionary, eventually you're going to 
want to get rid of them. You'll need to delete entries in order to re-
enter them correctly, or delete entries in order to make room for 
another application. After all, your dictionary is finite; no matter how 
large you make it, you will be aware of its upper limit. Parkinson's Law 
may be rephrased: Dictionaries expand to fill the available space.  

There is only one feasible way to delete entries. That is to delete all 
entries after a certain point. If you were to delete specific entries, you 
would leave holes in the dictionary, since it occupies contiguous core. 
If you attempt to pack the dictionary to recover the holes, you are 
faced with a wicked re-location problem, since we use absolute 
addresses. To avoid absolute addresses is inefficient and 
unnecessary.  

Deleting trailing entries is a completely satisfactory solution. I know 
of no argument to prove thie, except to say try it and see. You'll find 
that, in practice, you add a bunch of entries; find a problem; delete 
those entries; fix the problem; and reenter all the entries. Or you fill 
your dictionary for one application; clear it; and re-fill with another 
application. Or you might re-load the same application just to clear 
some fields. In each case, you want to get rid of all the latest entries.  

One exception is when you use some entries to construct others. The 
constructing entries are then no longer needed, and there is no way 
to get rid of them. It happens; I may even give some examples later. 
But all you lose is dictionary space, and I can't see a practical 
solution.  

OK, how do you delete trailing entries? You want to mark a point in 
your dictionary and reset evereything to that position. One thing is the 
dictionary pointer that identifies the next available word in the 
dictionary. That's easy. However you must reset the chain heads that 
identify the previous entry for each of your search chains. It only 
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takes a small loop: follow each chain back, as you do when searching, 
until you find a link that preceeds your indicated point.  

If you have fixed-size entries, you must reset the pointer to the 
parameter area, but you don't have to follow links.  

A convenient way to specify the point you want to delete from is to 
place a special entry there. A verb that will delete itself and 
evereything following it when you execute it. For example, 

 REMEMBER HERE 

is a defining entry. When you type HERE, it is forgotten; it both marks 
a place in the dictionary and executes the deleting code. HERE 
doesn't need a parameter field, unless you use fixed-length entries, 
whereupon it must save the current value of the parameter pointer. 
This is our first example of a verb-defining entry.  
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4.3 Operations 

Recall that the stack is where arguments are found. There are some 
words you may want to define to provide arithmetic capabilities. They 
are of little value to a control language, but essential to add power to 
it. I'll use logical constructs TRUE (1) and FALSE (0). And remember 
the definition of top and lower from 3.6.  

Unary operators: change the number on top of the stack. 

 MINUS changes sign of top.  

 ABS sets sign positive.  

 ZERO if top is zero, replace it with TRUE; otherwise place 
FALSE onto the stack.  

 NONZERO if top is nonzero, place TRUE onto the stack; 
otherwise leave it alone (leave FALSE on the stack). 

Binary operators: Remove top from the stack and replace lower by a 
function of both. 

 + add top to lower.  

 * multiply lower by top.  

 - subtract top from lower.  

 / divide lower by top, leave the quotient.  

 MOD divide lower by top, leave the remainder.  

 MAX if top is larger than lower, replace lower by top.  

 MIN if top is smaller than lower, replace lower by top.  

 ** raise lower to power of top. 

These are only samples. Clearly you are free to define whatever words 
you feel useful. Keep in mind that you must place the arguments on 
the stack before you operate on them. Numbers are automatically 
placed on the stack. Constants are too. Thus the following make 
sense: 

 1 2 +  

 PI 2. *  

 1 2 + 3 * 7 MOD 4 MAX  

 1 2 3 + * 
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This notation permits arithmetic calculation in the same manner a 
desk calculator. It is often called parenthesis-free representation or 
perhaps right-handed Polish, but it is simply the way you work with 
arguments on a stack. Conventional algebraic notation is much 
harder to implement (8.2).  

Other binary operations are the arithmetic relations: these leave a 
truth value on the stack: 

 = are they equal?  

 < is top greater than lower?  

 > is top less than lower?  

 >= is top not greater than lower?  

 <= is top not less than lower? 

The logical operations include a unary and several binary: 

 NOT if top is FALSE, replace with TRUE; otherwise replace 
with FALSE.  

 OR logical or.  

 AND logical and.  

 IMP logical implication.  

 XOR logical exclusive or. 

Your stack must have a fixed word-length. However the operations 
mentioned above might apply to several kinds of numbers: integers, 
fixed-point fractions, floating-point fractions, double-precision 
fractions, complex numbers, vectors of the above kinds. The truth 
values are only 1 bit. Clearly, the stack must be able to hold the 
largest number you expect to use. Less clear is how you should 
distinguish among various kinds of numbers.  

One way is to define separate operations for each kind of number: 

 + integer and fixed-point add (they are the same).  

 +F floating-point add.  

 +D double-precision add. 

Another is to make a stack entry long enough to contain a code 
identifying the kind of number. This makes the code defining each 
operation more elaborate and raises the problem of illegal arguments. 
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I recommend not checking arguments and defining separate 
operations, for reasons of simplicity. Actually, you are working with 
one kind of number at a time and the problem may never arise.  

Do not bother with mixed-mode arithmetic. You never need it, and it's 
not convenient often enough to be worth the great bother. With 
multiple word numbers (complex, double-precision) you may put the 
address of the number on the stack. However, this leads to 3-address 
operations with the result generally replacing one of the arguments. 
And this, in turn, leads to complications about constants.  

In general, the number of things you might do with numbers increases 
indefinitely. Many of these are mutually incompatible. Basic Principle!  
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4.4 Definition entries 

I must now describe an entry more complicated than any so far, 
though not the most complicated that you'll see. It is also exceptional 
in that it's not optional. For this ability is required for any effective 
application language: to be able to define one word in terms of others. 
To abbreviate, if you will. You recall that I characterised words as 
being simple in themselves, but powerful in combination. Well here is 
a way to combine words.  

A definition consists of a defining entry ":" followed by a series of 
words terminated by ";". The intention is that the word defined by ":" 
has the meaning expressed by the words that follow. For example: 

 : ABS DUP 0 LESS IF MINUS THEN ; 

This is a definition of the word ABS. Its purpose is to take the 
absolute value of the number on the stack. It does this by executing a 
series of words that have the proper effect.  

You may consider this a rather clumsy definition of ABS. Especially 
since there is an instruction on your computer that does exactly that. 
you're quite right, definitions tend to be clumsy. But they let us use 
words that we hadn't the foresight to provide entries for. Given certain 
basic words we can construct any entry we need. Definitions provide 
a succinct distinction betwen a control language and an application 
language: The control language must have all its capabilities built in; 
the application language can construct those capabilities it needs.  

To implement definitions is simple, yet awkwardly subtle. The 
parameter field of a definition contains the addresses of the 
dictionary entries that define it. You must somehow deposit these 
entries in the parameter area, and later fetch them when you execute 
the definition. The complementary processes of definition and 
execution are more involved than for any other entry we've 
encountered.  

Before I describe these processes in detail, let me try to clarify exactly 
what a definition is. You recall that the code executed for a word is a 
routine, and not a subroutine. And yet a series of words is like a 
series of subroutine calls, for the control loop serves the function of 
returning to a position where the next word can be found. You might 
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consider a definition to be just that: a series of subroutine calls with 
the addresses of the subroutines constituting the definition.  

Another viewpoint is concealed in an abbreviation I use: I speak of 
"executing a word", when I really mean executing the code associated 
with the word. Or even more precisely, executing the code whose 
address is stored in the dictionary entry for the word. The 
abbreviation is not only convenient, it suggests that a word is an 
instruction that can be executed. And indeed, it is helpful to think of a 
word as an instruction: an instruction for a computer that is being 
simulated by our real computer. Let's call that imaginary computer the 
"virtual computer". Thus when you type words you are presenting 
instructions to the virtual computer. The control loop becomes the 
instruction fetch circuitry of the virtual computer.  

If we extend this analogy to definitions, a definition becomes a 
subroutine for the virtual computer. And the process of defining a 
definition is equivalent to compiling this subroutine. We'll return to 
this analogy later.  

You'll see that the virtual computer is a real help in understanding 
definitions. In fact, it originally led me to apply compiler techniques to 
definitions - techniques that otherwise wouldn't have occurred to me. 
But although it may be helpful to programmers, it is only confusing to 
non-programmers. So I prefer the name "definition" for this type of 
entry, and the phrase "defining one word in terms of others" as its 
explanation.  

Definitions are extremely powerful. Why, is hard to explain, hard even 
to comprehend. Their value is best appreciated by hindsight. You 
complete a ludicrously simple implementation of an application, 
discover that you used a dozen definitions and nested them 8 deep. 
The definitions appear responsible for the simplicity.  

But there are several properties that emphasize the value of 
definitions over their equivalent, a series of subroutine calls. First, 
you needn't be concerned about call sequence, about what registers 
are available and what must be saved; simply type a word. Second, 
one definition can execute another. That is, you can nest definitions, 
again without any concern about saving return addresses or other 
register conflicts. You can even use definitions recursively without 
concern. Third, you can pass arguments among definitions 
effortlessly, in fact invisibly, since they are on the stack. Again you 
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have no concern for calling sequence or storage conflicts. Plenty of 
temporary storage is available, too; again on the stack.  

Of course you have to pay for this convenience, though probably less 
than you would with FORTRAN subroutine calls. The price is the 
control loop. It's pure overhead. Executing the code for each entry of 
course proceeds at computer speed; however obtaining the address 
of the next code to execute takes some instructions, about 8. This is 
why I urge you to optimize your control loop.  

Notice that if the code executed for words is long compared to the 
control loop, the cost is negligible. This is the principle of control 
languages. As the code shrinks to control loop size, and smaller, 
overhead rises to 50% and higher. This is the price of an application 
language. Note, however, that 50% overhead is easily reached with 
operating systems and compilers that support an application program.  

I suggest that you compromise. Code the computation-limited 
portions of your problem and use definitions for the rest. The use of 
definitions to control, rather than perform, calculations is inexpensive. 
And the ease of constructing them reduces the time and effort, and 
thus cost, of implementation.  
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4.4.1 Defining a definition 

The defining entry ":" acts just like any other. It passes the address 
EXECUTE to the ENTRY subroutine. I'll discuss that code in the next 
section.  

It then sets a switch STATE. The control loop must be changed to test 
STATE: if it is 0, words are executed as I've already described; if it is 1, 
words are compiled. Let me repeat: if you add definitions to your 
program, you must modify the control loop so that it will either 
execute or compile words. If you plan to include definitions from the 
start, you should plan the control loop accordingly. Implement the 
switch so that executing words is as fast a possible; you'll execute 
many more words than you'll compile.  

To compile a word is simple. After finding it in the dictionary, you 
have the address of its dictionary entry. Deposit this address in the 
parameter field. Notice 2 things: we already have a mechanism for 
depositing words in the dictionary. ENTRY uses it as well as many 
defining entries for parameters. The dictionary pointer DP identifies 
the next available word in the dictionary. All you must do to compile a 
word is to store its address at DP and advance DP. Also notice that 
we deposit the address of the entry not the address of the code 
executed. This is so we have access not only to the code but also to 
the parameter field, and even the word itself should we need it.  

All right, so much for compiling words. What about numbers? A 
number presented to a compiler is called a literal. And literals are a 
problem to any compiler. Fortunately we can define our virtual 
computer so that it can handle literals in-line. You must again modify 
the control loop to test STATE when a number is successfully 
converted.  

Before showing how to compile a number, let me define pseudo-
entries. A pseudo-entry is a dictionary entry that is not in the 
dictionary. That is, it has the format of an entry but it is not linked to 
other entries. Thus it would never be found during a dictionary search. 
You see, we occassionally need entries to permit the virtual computer 
to run smoothly, but we don't want to slow the dictionary search by 
including non-referencable entries.  
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As you've probably guessed, in order to compile a literal you compile 
a pseudo-entry. You then follow it by the number itself; that is, you 
compile the number also. The result is a double-length virtual-
computer instruction. The code executed for the pseudo-entry must 
fetch the number and place it onto the stack. Thus literals that are 
compiled have the same effect, when executed, as if they were 
executed immediately.  

Notice that if you have different-size literals, you'll need different 
pseudo-entries for them And having brought up the subject, let me 
discuss word length a moment. Word length for the virtual computer 
should be about 12 bits. This is because each instruction is 
composed of simply a dictionary address and 12 bits is enough to 
identify one of perhaps 1000 entries. If your real computer word 
length is longer than 18 bits you should pack several virtual-computer 
instructions into one word. This is possibly awkward, since you must 
modify DP to address other than a real computer word. But you'll save 
a lot of space.  

Incidently, since literals require extra space when compiled, you 
might define commonly used literals as words: 

 1 CONSTANT 1 

Recall that numbers may be words, since the dictionary is searched 
before numeric conversion is attempted. And a word requires only a 
single-length virtual-computer instruction. On the other hand, a 
dictionary entry takes much more space than a compiled literal, so 
watch the trade-off.  

The code in the control loop that compiles words much watch for ";". 
It is compiled as usual, but it also resets STATE to prevent further 
compiling. It also performs another task, which requires a digression.  

Notice that when we're compiling a definition we're searching the 
dictionary for each word. If we reference the word we've just defined, 
we'll find it. Thus we'll have made a recursive reference. If you want 
recursive definitions, fine. However it's extrememly convenient to 
exchange recursion for re-definition. That is, to understand a 
reference to itself inside a definition to refer to an earlier definition. 
For example, 
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 : = SWAP = ; 

Here I redefine the = verb to operate upon arguments in the opposite 
order. I could use a different word for that purpose, but = has 
mnemonic significance.  

In any case, the capability is easy to provide. Let ":" bugger the 
search so the latest entry cannot be found. And let ";" unbugger the 
search and thereby activate the new definition. If you want recursive 
definitions, you could provide a defining entry ":R" that did not 
bugger, providing you make ";" work for both. I'll mention another 
technique later.  
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4.4.2 Executing a definition 

I named the code executed for a definition EXECUTE. It must modify 
the instruction-fetch circuitry of the virtual computer.  

Recall the structure of the control loop: the routine NEXTW provides 
the address of a dictionary entry; the routine associated with this 
entry is entered; it ultimately returns to NEXTW. The same procedure 
is required in order to execute a definition, with the exception that 
NEXTW is replaced by NEXTI. Where NEXTW read a word and found it 
in the dictionary, NEXTI simply fetches the next entry from the 
parameter field of the definition.  

Thus you need a variable that identifies the routine to be entered for 
the next entry. One implementation is to define a field NEXT that 
contains either the address of NEXTW or NEXTI. If you jump indirect to 
NEXT, you will enter the appropriate routine. One task of EXECUTE is 
therefore to store the address of NEXTI into NEXT, causing 
subsequent entries to be obtained in a different way.  

Of course NEXTI must know where to find the next entry. Here the 
virtual computer analogy is extended by the addition of an instruction 
counter. If you define a field, preferably an index register, named IC it 
can act exactly like an instruction counter on a real computer. It 
identifies the next entry to be executed, and must be advanced during 
execution.  

You can now see the complete operation of NEXTI: fetch the entry 
identified by IC, advance IC to the next enty, and return to the same 
point NEXTW does to execute the entry (or compile it, as the case may 
be). If you use definitions at all, you'll use them extensively. So NEXTI 
should be optimized at the cost of NEXTW. In particular, the code that 
executes (compiles) entries should be fallen into from NEXTI and 
jumped to from NEXTW. This saves one instruction (a jump) in the 
control loop using NEXTI. This can be 20% of the loop, apart from 
actually executing the entry's code, for a substantial saving.  

Now let's return to EXECUTE. Clearly, in addition to establishing 
NEXTI it must initialize IC. But first it must save IC. The process is 
analogous to a virtual-computer subroutine call. The obvious place to 
save IC is the return stack. Although it is used for other purposes, 
none of these conflict with such use. If one definition is executed from 
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within another, it is clear the current IC must be saved. Otherwise the 
current value of IC is undefined.  

One more routine is involved in this process. The code executed for 
";" must return from the definition. This means simply that it must 
restore IC from the return stack. However it must also restore the 
value of NEXT, which was set to NEXTI by EXECUTE. You might store 
the old value of NEXT in the return stack and let ";" recover it. Simpler, 
perhaps, is to let the undefined value of IC be zero, and act as a flag 
to restore NEXT to NEXTW. For while executing definitions, NEXT will 
always contain NEXTI. Only when returning from a definition that 
originated within the source text must NEXTW be reestablished. Since 
while executing source text IC is irrelevant, it might as well by useful 
in this limited way.  

That's all there is to it. The combination of EXECUTE, NEXTI and ";" 
provide a powerful and efficient subroutine facility. Notice that the 
code "executed" for a definition might actually be compiled, 
depending on the field STATE, as dicussed earlier. Notice also that 
the entries executed by a definition might compile other entries. That 
is, one entry might deposit numbers in the dictionary, using DP. Thus 
although the fields IC and DP are similar in use, DP deposits entries 
and IC fetches them, they may both be in use at the same time. If 
you're short of index registers, don't try to combine them.  
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4.4.3 Conditions 

Let me review briefly the process of defining a definition: The word ":" 
sets a switch that modifies the control loop; it will now compile words 
instead of executing them. The word ";" is compiled, but also causes 
the switch to be reset, ending the process of compilation. Following 
words will now be executed as usual.  

We can thus view ";" as being an exceptional word, for it is - in a 
sense - executed during compilation, at which time it resets that 
switch. Of course it is also executed during execution of the definition, 
with a different effect: it resets IC.  

There are other words like ";" that must be executed during 
compilation. These words control the compilation. They perform code 
more complicated that simply depositing an entry address. In 
particular, they are required to provide forward and backward 
branching.  

Rather than talk abstractly about a difficult and subtle point, I'll give 
some examples of words that I've found useful. As always, you are 
free to choose your own conventions, but they will probably resemble 
mine in their basic effects.  

Define the words IF, ELSE and THEN to permit the following 
conditional statement format: 

 boolean value IF true statement ELSE false statement THEN 
continue 

The words have a certain mnemonic value, though they are permuted 
from the familiar ALGOL format. Such a statement can only appear in 
a definition, for IF, ELSE and THEN are instruction-generating words.  

At definition time, the word IF is executed. It compiles a forward jump. 
Now I must sidetrack the discussion and define jumps. A jump 
instruction for the virtual computer is similar to a literal. An in-line 
literal is a double-length instruction. The code executed for the 
pseudo-entry comprising the first half, uses the second half as a 
parameter. Likewise for jumps: a pseudo-entry uses an in-line 
parameter to change the virtual-computer instruction-counter (IC). 
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This parameter is the amount, positive or negative, to be added to IC: 
positive for a forward jump, negative for a backward jump. It is a 
relative jump address, and the whole construction is used by some 
real computers.  

Actually we need 2 jump pseudo-entries: a conditional jump and an 
unconditional jump. The conditional jump jumps only if the stack is 
non-zero, and it is a destructive operation (its argument is dropped).  

All right, back to IF. At definition time it compiles the conditional jump 
pseudo-entry, followed by a 0. For it doesn't know how far to jump. 
And it places the location of the 0, the unknown address, onto the 
stack. Remember that the stack is currently not in use, because we're 
defining. Later it wil be used by those words we're defining, but at the 
moment we're free to use it to help in the process.  

Now look at ELSE. At definition time it compiles an unconditional 
jump pseudo-entry followed by 0. But then it stores the current value 
of DP, the next available location, into the location on the stack. Thus 
it provides the distance for the conditional jump generated by IF. 
Actually it must subtract to get a relative address, but the principle is 
clear. In turn it leaves the location of its address on the stack.  

Finally we come to THEN. It fixes-up the address that ELSE left 
dangling. That is, it subtracts the stack from DP and stores the result 
indirectly in the stack; and destructively. Thus the combination of IF, 
ELSE and THEN use the stack to construct forward jump virtual-
computer instructions. Since ELSE and THEN act identically in fixing-
up the missing address, ELSE can be omitted without any 
modification. Also since the stack is used to store unfulfilled jumps, 
IF . . . THEN statements may be nested. The only restriction is that all 
addresses are determined; that is, that all locations are removed from 
the stack. This will be the case if every IF has a matching THEN; ELSE 
is always optional.  

Of course there's nothing unusual about this technique. All compilers 
generate forward jumps in this manner. What is somewhat unusual is 
applying it to the compilation of instructions for a virtual-computer. 
But it seems to be the best way.  

Let's consider a related construction. Very often we are faced with 
logical expressions that consist of a string of ANDs or a string of ORs. 
The truth value of such expressions may be determined before the 
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entire expression is evaluated. You can save time by quitting once 
you know the final result. For example, consider the statement: 

 a b AND c AND IF . . . THEN 

where a, b, c are boolean expressions; and the statement would read 
in ALGOL 

 if a and b and c then . . . 

If a is false, we might as well quit, since the disjunction cannot 
possibly be true. If you re-write the statement as: 

 a IF b IF c IF . . . THEN THEN THEN 

the effect is the same; if a, b and c are all true the conditional 
statement is executed. Otherwise not. Each IF generates a forward 
jump that is caught by its matching THEN. Note that you must still 
match IFs with THENs. In fact this is one sort of nested IF . . . THEN 
statement. It is an extremely efficient construction.  

Now consider the corresponding statement with ORs: 

 a b OR c OR IF . . . THEN 

or in ALGOL 

 if a or b or c then 

If a is true you may as well quit, for the conjunction cannot be false. If 
you re-write the statement as 

 a -IF b -IF c IF HERE HERE . . . THEN 

and if you define 

 : HERE SWAP THEN ;  

 : -IF NOT IF ; 
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the statement works as follows: if a is true, -IF will jump; if b is true, -if 
will jump; if c is false, IF will jump. The first HERE will catch b's jump 
(the SWAP gets c's address out of the way); the second HERE 
catches a's jump; THEN catches c's jump. Thus a and b jump into the 
condition, while c jumps over it.  

This is a slightly clumsy statement, but I've found no simpler solution. 
If you used them regularly, you'd doubtless acquire facility, and it 
would seem quite natural. Just watch that you match all IFs. Moreover 
the same technique could be applied to more complex logical 
expressions - with even greater clumsiness.  
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4.4.4 Loops 

I'll continue with a couple more examples of words executed at 
definition time. This time examples of backward jumps, used to 
construct loops.  

Consider the pair of words BEGIN and END, as used in a statement 
like: 

 BEGIN . . . boolean END 

BEGIN stores DP onto the stack, thus marking the beginning of a loop. 
END generates a conditional backward jump to the location left by 
BEGIN. That is, it deposits a conditional jump pseudo-entry, subtracts 
DP+1 from the stack, and deposits that relative address. If the boolean 
value is false during execution, you stay in the loop. When it becomes 
true, you exit.  

BEGIN and END provide a loop terminated by a logical condition. 
Let's define another loop. This one counts an index through a range 
to control the looping: 

 a b DO . . . CONTINUE 

a and b represent arguments on the stack. DO acts just like BEGIN. 
CONTINUE requires a new pseudo-entry that tests the top 2 words on 
the stack for equality, and jumps if they are unequal. During 
compilation CONTINUE deposits this pseudo-entry and then 
computes the jump distance as did END. Thus CONTINUE uses 
another conditional jump: one that tests the stack for equal, instead of 
for false. It is also a non-destructive operation, so long as its 
arguments are unequal. When they become equal and terminate the 
loop, it drops them.  

Presumably, inside the DO . . . CONTINUE loop the arguments are 
modified so as to terminate the loop. This can be done many ways. 
For example, to run the loop from 1 to 10: 

 10 0 DO 1 + . . . CONTINUE 
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The first argument is 10, the stopping value; the second is 0, which is 
immediately incremented to 1, the index value. Within the loop this 
index is available for use. the DUP operation will obtain a copy. Each 
time through the loop the index will be incremented by 1. After the 
loop is executed for index value 10, the CONTINUE operation will stop 
the loop and drop the 2 arguments - now both 10.  

Alternatively, the same loop could be written: 

 11 1 DO . . . 1 + CONTINUE 

Here the index is incremented at the end of the loop, instead of the 
beginning. Upon reaching 11 and exceeding the limit of 10, the loop is 
stopped.  

Naturally loops can be counted backwards, or indeed many other 
methods of modifying the index used. It will always terminate on 
equality. Of course, such a flexible loop control runs the risk of never 
stopping at all. If you increment the index incorrectly, it will happily 
run forever. But used carefully, it's a convenient tool.  

A refinement of DO . . . CONTINUE is not difficult. If the arguments are 
equal to start with, DO can generate a conditional forward jump that 
CONTINUE will fix-up. Thus you may do a loop no times. However, 
such loops are the exception; but if you encounter one, you'll find the 
conditional statement required to protect it most awkward.  
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4.4.5 Implementation 

I hope you now appreciate the need for words that are executed at 
define time. I'm sure you're aware of the need for branches and loops. 
Perhaps you'll notice that I did not mention labels; the branch 
generating words I mentioned, and others you can invent, are 
perfectly capable of handling jumps without labels. You saw in the 
definition of HERE how the stack can be manipulated to permit 
overlapping jumps as well as nested ones. However in a sense we 
have many labels, for every dictionary entry effectively assigns a 
name to a piece of code.  

Now to consider some problems I glossed over. Clearly you must be 
able to recognize those words that are to be executed during 
definitions. That is, IF, THEN, BEGIN, END, etc. must somehow 
override the normal mechanism whereby the control loop would 
compile them. I mentioned a switch that distinguished execution from 
compilation. Let's establish a similar flag (1 bit) in each dictionary 
entry, with the values 

 1: execute  

 0: compile 

applying both to switch and flag.  

For a given entry, 'or' the switch and flag together; if either is 1, 
execute the word, else compile it.  

The above rule is correct, and even fairly efficient. Remember that we 
want the control loop efficient! And it's adequate providing all words 
that must be executed are built into your system dictionary. 
Unfortunately, it's not adequate for the examples I gave above, which 
probably means it's inadequate, since those were pretty simple 
examples. But complication is part of the fun of programming. So pay 
attention and I'll try to explain some problems I don't understand very 
well myself.  

Editor: I don't understand my concern about 
SWAP below. The word ! did not endure. Don't try 
to reconcile what I said. I can't. 
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Consider the definition of HERE I gave above: 

 : HERE SWAP THEN ; 

Here is one of those imperative words; it must be executed at 
definition time. But it is defined as an ordinary definition - and would 
be compiled. Even if we managed to execute HERE, the first word in 
its definition is SWAP: a most ordinary word, and one that would 
certainly be compiled, except that we intend it, too, to be executed. 
The next word, THEN, offers no problem - or does it? If we can 
execute HERE we'll also execute THEN, since it's imperative. However 
we have a problem at the time we define HERE; we'll try to execute 
THEN, when we want to compile it. That is, sometimes we want to 
compile imperative words; and sometimes we want to execute 
ordinary words - even in a definition.  

So, what to do? I bet you think I have a solution. Your faith is touching, 
but I don't have a very good one. It suffers a small restriction, but a 
nagging one: you may not execute a literal in a definition. To phrase it 
positively: literals must be compiled inside definitions. Let's see how 
it works.  

Consider the switch STATE. It's normally 0; ":" makes it 1 to indicate 
compilation. Let's define a new defining entry ":!" that acts exactly 
like ":" with 2 exceptions: 

 It sets the entry flag to 1; to mark an imperative word.  

 It sets STATE to 2; to force all words to be compiled. Since the 
test in the control loop is to execute if STATE and flag are 
equal, nothing will execute. 

";" is unchanged; its sets STATE to 0 for both sorts of definitions. 
This solves all our problems except SWAP. How do we execute words 
that ordinarily would be compiled?  

Define a new entry "!". Let it execute the last entry compiled and 
remove it from the compilation. Now we can re-write the definition of 
HERE as 

 :! HERE SWAP ! THEN ; 

and it will work. I'll review the rules: 
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 All words are normally executed.  

 Only words flagged imperative are executed in definitions.  

 Any word can be made imperative by following it with an "!".  

 A definition can be made imperative by using ":!" instead of 
":" to define it. 

Now the restriction I mentioned should be apparant. A literal cannot 
be made imperative with a "!" because it's a double-length instruction 
- and the "!" code has no way of knowing that. Oh well, we could set a 
field to indicate the length of the last compiled instruction, but it's not 
that great a problem. Besides, in that case successive !s wouldn't 
work.  
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4.5 Code entries 

I've explained definitions and how they, in effect, compile instructions 
for the virtual-computer. What about compiling code for your real 
computer then? Of course you can. But you probably won't.  

The Basic Principle intrudes. If you add code entries to your program, 
you add enormous power and flexibility. Anything your computer can 
do, any instructions it has, any tricks you can play with its hardware 
are at you fingertips. This is fine, but you rarely need such power. 
And the cost is appreciable. You'll need many entries (say 10) to 
provide a useful compiler; plus all the instruction mnemonics. 
Moreover you'll have to design an application language directed at the 
problem of compiling code.  

I don't want to down-grade the possibility or value of such efforts, but 
you wrote your program in some language to start with. If you need 
additional code it's much easier to re-compile your program and add 
what you need. Only if you have an application that needs tailored 
code. or can profit by providing different code to different users, or 
different code at different times, can you satisfy the Basic Principle.  

On the other hand, if you start with code entries, you can construct all 
the other entries I've been talking about: arithmetic operators, noun 
entries, definitions. In Chapter 9 I'll show how you can use code 
entries in a really essential role; and achieve a significantly more 
efficient and powerful program than by any other means. But except 
for that I'm afraid they are marginal.  

So how can you generate code? First you need a defining entry that 
defines a code entry. The characteristic of a code entry is that it 
executes code stored in its parameter field. Thus the address passed 
to ENTRY by its defining entry (say CODE) must be the location into 
which will be placed the first instruction. This is not DP, because the 
entry itself takes space; but is simply DP plus a constant.  

Second you need an entry to deposit a number at DP. We have used 
such a routine several times, constructing variables and definitions, 
but we've not had an entry for it. I suggest the word "," although that 
might conflict with your output entries. All it does is move a number 
from the stack to the parameter field. Instructions are numbers of 
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course. You'll construct them on the stack and then deposit them. 
Incidently, this is a useful entry - apart from compiling code. You'll 
find it useful for initializing data arrays of all kinds.  

Now you can appreciate the source of my earlier caution. You'll have 
to provide a flock of entries that access code compiled into your 
program that we've not needed to reference directly before. For 
example RETURN: when you routine is finished, it must jump to the 
control loop, just as you built-in entries do. However you don't know 
the location of the control loop in core; and it moves as you change 
your program. So you must have an entry to generate a RETURN 
instruction.  

Likewise, if you plan to compile defining entries you must provide 
entries that will generate subroutine calls to ENTRY. Other code might 
want to access WORD or NUMBER or indeed any facility already 
available in your program. Moreover you will have to define variable 
entries for those fields you will use: D and F for output; perhaps 
STATE and BASE; Basically, the problem is that you must make 
available outside your program, all the labels available inside it 
already. You must use them enough to justify the effort.  

All right, you've done that much. Now you've got to decide how to 
construct an instruction. They have several fields - instruction, index, 
adddress - that you'll want to put onto the stack separately and 
combine somehow. This is easy to do, but hard to design. You 
probably don't want to copy your assembler, and probably couldn't 
follow its format conveniently anyway. In fact you can do a good job 
of designing a readable compiler language; but it will take some effort. 
Definitions provide all the tools you need.  

For example, you might write a definition that will "or" together an 
instruction and address and deposit it. Or if your hardware's awkward, 
you can provide a definition that converts absolute addresses to 
relative, or supplies appropriate paging controls. Whatever you need, 
or want can be readily defined. Done properly, such a compiler is a 
substantial application in itself, and if you're going to do it at all, plan 
to spend the necessary time and effort.  

We discussed conditional statements and loops for the virtual 
computer. Precisely the same techniques apply here, with due 
allowance for hardware variations. In fact, I originally applied the 
stack-oriented branch generation to code for my real computer. Such 
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statements are really the difference between an assembler and a 
compiler. Keep in mind the Basic Principle.  

One valuable use of a compiler is the permit the definition of new 
kinds of nouns. That is, to construct new defining entries. As an 
example consider using the primitive compiler to define instruction 
entries as described just above. Or you might want to define entries 
that multiply the top of the stack by a constant.  

As usual when adding an ability, several distinct entries must 
cooperate to provide it. In this case ENTER and ;CODE. Let me 
illustrate: 

 : UNIT ENTER , ;CODE 1 V LDA , SP MPY , SP STA , NEXT ,  

 2.54 UNIT IN  

 4. IN 

The first line defines the word UNIT. The next line uses this defining 
entry to define the word IN (inches). The last line uses IN in a way that 
puts 4 inches onto the stack, as centimeters. The 3 lines are 
equivalent to 

 : IN 2.54 * ; 

which is certainly simpler. But if you want to define many UNITs, a 
special defining entry is much more convenient and efficient.  

The first special word is ENTER. It calls the ENTRY subroutine used 
by all your defining entries, but passes a 0 address as the location of 
the code to be executed. Look at the definition of UNIT. The word 
ENTER is imperative. It generates a double-length pseudo-instruction; 
a pseudo-entry for the first half and a 0 constant for the second. At 
execution time, the pseudo-entry will call ENTRY to construct a new 
dictionary entry, passing the following constant as the address of 
code to be executed. The word ;CODE is a combination of the words 
";" and CODE. It terminates the definition of UNIT and stores DP into 
the address field established by ENTER. Thus the code that 
follows ;CODE is the code that will be executed for all entries created 
by UNIT. ;CODE knows where to store DP because ENTER is 
restricted to being the first word in any definition that uses it; 
and ;CODE knows which definition it is terminating.  
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The restriction on the position of ENTER is unimportant, it may as 
well be first as anywhere else. In the case of UNIT, only a "," to 
deposit the constant was needed. Other nouns might need more 
elaborate processing to establish their parameter field.  

You notice I gave an example of code following ;CODE. You see 
instruction mnemonics and addresses deposited by ",". I don't want 
to explain this compiler language, for it is not relevant for your 
computer.  

One more suggestion might prove helpful. You might define a new 
kind of constant: an instruction. When executed, an instruction 
expects an address on the stack, extracts a constant from its 
parameter field and constrcts and deposits a completed instruction. 
You'll probably have a large number of instructions, and use a large 
number. This will save you many deposit entries.  

I'm sorry, but I think it's infeasible to attempt an example. If you can't 
see how to construct your own code entries from what I've already 
said, forget it. The application is extremely machine dependent - and 
rightly so. Don't attempt to apply the same code to several 
computers; definitions already do that for you. The purpose of code is 
to exploit the properties of your particular computer.  
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5. Programs with memory 

You may perhaps grant the value of a program that grows, without 
being willing to provide the volume of input required. Naturally it does 
little good to have a hundred dictionary entries if you must type every 
one. Obviously we need a place to save entries and obviously that 
place is disk (or drum, or other random secondary memory).  

What is not obvious is how to store entries. It ought to be a Second 
Principle that you never save anything on disk without being able to 
modify it, but this rule is universally ignored. To simply copy 
dictionary entries violates another cardinal principle: never store core 
address on disk. You could never modify your program without 
chasing down all code addresses.  

Fortunately there is a solution. Store on disk the text from which 
dictionary entries are constructed. It is a simple matter to divert the 
input routine from reading your message buffer to reading disk. This 
chapter will show how.  
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5.1 Organization of disk 

There is only one way to organize disk. In the same way that core is 
divided into a large number of words, disk must be divided into a 
large number of blocks. In the same way that words are the smallest 
field that can be fetched from core, blocks are the smallest field that 
can be fetched from disk. A block contains 256 words.  

A block contains 256 words because that is the size of a 1-byte 
address, and because 256 4-byte words hold 1024 bytes which is the 
amount of text that can be displayed on a typical scope.  

However, here is another instance in which your application and 
hardware must play a dominant role. Disks usually have a hardware 
block-size that offers advantages. You must choose a multiple of that. 
Your application may involve storing data on disk, and you must 
choose a block size useful for data as well as text. I say no less than 
512 characters nor more than 1024. 128 word blocks have recently 
been mentioned; fine if the words are 6 or 3 bytes (characters).  
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5.1.1 Getting blocks 

In trying to anticipate the organization of a random file, certain 
principles are obvious. Cross-references between blocks will 
probably be wanted. Such references are simple if they use absolute 
block addresses; extremely clumsy otherwise. We may use absolute 
addresses if we promise never to move a block. This means we can 
never pack disk. We agree cheerfully because we didn't want to pack 
disk anyway.  

This means that as the data in blocks becomes useless, space will 
become available in block-sized holes. We must somehow re-use 
these holes. Which means that we must allocate, and re-allocate, disk 
in block-sized pieces.  

All addresses start at 0, block addresses included (otherwise you find 
youself forever adding and subtracting 1). However we cannot use 
block 0 - for anything. You will find that most addressing errors 
involve block 0. If you look at block 0 from time to time you will find 
the most amazing things there. You will find block 1 a useful place to 
store things you need to remember from run to run. Like the address 
of the first block available for re-use - none: 0. And the address of the 
last block used - initially: 1.  

You will want to copy disk (onto another disk, or tape) for protection. 
You need only copy the nuber of blocks used, which is usually less 
than half the disk capacity, or else you're pretty worried about space. 
If you destroy block 1 (you will) you will have to re-load the entire disk 
from your back-up. Never try to recover just block 1, you'll end up 
horribly confused.  

You may want to put your object program on this disk. Fine! It won't 
even take many blocks. You may need to start it in block 0 in order to 
do an initial load (bootstrap). OK, but be able to re-load the program 
(only) from back-up because you will destroy block 0. Only if you 
destroy the block (we'll call it block 1) containing available space 
information must you re-load data (all data). Unless you destroy many 
blocks. Choose the path of least confusion, not least effort. Re-
loading disk will confuse you, you'll forget what you've changed and 
be days discovering it. Much better you spend hours re-typing text 
and re-entering data.  
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So when you need a block, you type a word (GET) which reads block 
1, places the block up for re-use on the stack, reads that block, places 
the contents of its first word into block 1, and re-writes block 1. The 
first word, of course, contains the address of the next block up for re-
use. If no block was availabe for re-use (initially the case), GET 
increments the last block used, puts it on the stack and re-writes 
block 1. GET then clears your new block to 0 and re-writes it.  

Several comments: Notice that GET places its result on the stack - the 
logical place where it is available for further use. Notice that blocks 
are re-used in preference to expanding the disk used. This makes 
sense except for the problem of arm motion. Forget arm motion. You 
just have to live with it. This is, after all, a random memory. Don't 
neglect clearing the block to 0.  
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5.1.2 Releasing blocks 

To release a block, put it on the stack and say RELEASE. It will read 
block 1, extract the next block for re-use, place the stack there and 
write block 1; then read the released block and place the old next-
block in the first word. All we're doing, of course, in constructing the 
chain of available blocks used by GET. Possibly the block you release 
is linked to other blocks. You must release all those, too. A 
convenient way is to use the first word as a link field. Then the 
available block chain is the same as any other block chain. To 
concatenate chains you place the first block in block 1, run down the 
chain to the last block (0 in link) and place the old next-block in that 
link.  

Don't be tempted to maintain a count of the available blocks. Its not 
worth the trouble. If you must know, you can count the length of the 
available chain.  

If you have enough different kinds of blocks, it may be useful to store 
a code identifying the block in the first word (or second). You can 
then examine all blocks of a certain kind. Available blocks should 
have code 0.  

How many blocks you can have is probably limited by the disk, 
however it may be limited by the field you choose to store block 
addresses in. Be careful! You can circumvent the first limit by 
modifying your read subroutine to choose one of several disks. You 
must re-format all your block addresses (cross-references on disk, 
remember) to expand the second.  
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5.1.3 Reading and writing disk 

I'm sure you know how to read disk. However, do not choose a block 
size that causes the slightest difficulty: like half a block between 
tracks. If you check the GET routine, you'll see that you'll need 2 
blocks in core at once. This is a reasonable minimum, it makes it easy 
to move things from one block to another. However, you'll have lots of 
core left over and you might as well use it for buffering disk; 
especially if access time is noticeable.  

You'll want a table specifying which blocks are in core: your read 
routine can check this table before reading.  

But you should not write a block when you change it. Rather mark it 
'to be written' in the buffer table. When you come to re-use that buffer, 
write the old block first. The principle is that you're likely to change a 
block again if you change it once. If you minimize writes you can save 
a lot of disk accesses. Of course, there is a trade-off - if your program 
crashes, you may have updated blocks in core that aren't on disk. You 
should be able to re-start your program and preserve the core buffers.  

Of course, multiple core buffers imply an allocation problem. A simple 
round-robin is as effective a scheme as any.  

If you are going to scan data sequentially, you can save many 
accesses by reading consecutive blocks at the same time. However it 
is likely that random reads may be interspersed with these sequential 
ones. An effective solution is to store the last block in the sequential 
area and the number of blocks somewhere for your read subroutine. If 
the block isn't in core, and is within the sequential range, it can read 
as many consecutive blocks as there are consecutive buffers 
available. Don't attempt more than this - ie, making more buffers 
available. The net effect is that you will do the best you can with 
sequential blocks, subject to interfering constraints.  

You will inevitably spend a lot of effort reading-writing disk. But 
remember the Basic Principle!  
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5.2 Text on disk 

You will store a lot of text on disk - hundreds of blocks - but this is 
probably a small fraction of your disk. The rest is presumably data for 
your application(s).  

A block that contains text (I mean text to be read and executed by 
your program) contains one long character string. If the first word 
contains control information, it starts in the second word and extends 
until a particular word marks the end (perhaps ;S). This end word is 
important because it is inconvenient to have the input routine test for 
end-of-block. You quickly learn not to leave that word out.  

A block that contains text should have a special name, for you will be 
using it often in conversation. I have called such blocks SHEETs - 
since the text filled a sheet of paper - and SCREENs - since the text 
filled the screen of a scope. Define the word READ to save the input 
address, the block and character position of the next character to be 
scanned, on the return stack; and reset the input pointer to the block 
on the stack and the first character position. Define the word ;S to 
restore the original input pointer. Very simply you can have your 
program read block 123: 

 123 READ 

However . . . there's always a however, isn't there. You must modify 
your word routine to read the current block before scanning. This is 
expensive but essential (of course no actual read is performed if the 
block is in core), for the last word executed may have caused a block 
to be read that overlaid the block the word was read from. This can 
especially occur if one screen directs the reading of others (as they 
will). No other solution to this problem has been satisfactory, so 
swallow the code - which need not be great.  

You will find that with text on disk, the original characterization of 
'input' as low volume is strained. You will read many words and do 
many dictionary searches. However, on a microsecond computer, you 
won't notice it.  
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5.2.1 Text editing 

Never put anything on disk you can't modify! And we haven't 
discussed how you get text on disk in the first place. Do not load it 
from cards! You're misdirecting your effort toward card reading, and 
you had to punch the cards anyway. Type it. The definitions required 
to edit the text stored in blocks (SCREENs) is simple.  

You must be able to handle character strings surrounded with quotes 
(4.1). Given that, I shall exhibit a text editing screen. This is a simple 
example of the value of definitions. You may notice it is the first non-
trivial exmple I've given. You should be motivated by now to give it 
proper attention.  

Naturally, you're going to have to type these definitions twice. Once to 
put them into your dictionary; again, to use them to put them in a 
screen (bootstrapping). In fact you'll probably type them many times, 
but 2 is minimum.  

I'm going to exhibit an annotated copy of the EDIT screen I used in a 
particular program. It uses system entries whose value may not be 
clear. They are borrowed from other aspects of the application. 

 0 C1 42 # :R RECORD 

Here I am constructing a field description: RECORD is a 42 character 
field starting in character 1 of word 0 of the current block 
(understood). I'm using blocks that can hold 15 42-character lines; a 
word has 6 characters, so that's 15 7-word lines. 

 : LINE 1 - 7 * RECORD + ; 

Here I'm defining a verb that will convert a line number (1-15) to a field 
address. It modifies the RECORD descriptor by changing the word 
specification (low order bits). Thus line 1 starts in word 0; line 2 in 
word 7; etc. 

 : T CR LINE ,C ;  
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If I type 3 T - I want line 3 typed. T does a carriage return (CR), 
executes LINE to compute the field address, and copies the 
(character) field into the message buffer (,C). 

 : R LINE =C ; 

If I type " NEW TEXT" 6 R - I want line 6 to be replaced by the text in 
quotes. The leading quote puts a string descriptor on the stack. R 
then executes LINE, followed by =C to store the quote string in the 
field. The block will automatically be re-written, since it was changed. 

 : LIST 15 0 DO 1 +  

 CR DUP LINE ,C DUP ,I CONTINUE ; 

LIST will list the entire block: 15 42-character lines followed by line 
numbers. It sets up a DO-CONTINUE loop with the stack varying from 
1 - 15. Each time through the loop it: does a CR; copies the stack and 
executes LINE; types the field (,C); copies the stack again and types it 
as an integer (,I). 

 : I 1 + DUP 15 DO 1 -  

 DUP LINE DUP 7 + =C CONTINUE R ; 

If I type " NEW TEXT" 6 I - I want the text inserted after line 6. "I" must 
first shift lines 7 - 14 down one position (losing line 15) and then 
replace line 7. It adds 1 to the line number, sets up a backwards DO-
CONTINUE loop starting at 14, constructs two field descriptors, LINE 
and LINE+7, and shifts them (,C). When the loop if finished, it does an 
R. 

 : D 15 SWAP DO 1 +  

 DUP LINE DUP 7 - =C CONTINUE " " 15 R ; 

If I type 12 D - I want to delete line 12. D must move lines 13-15 up one 
position and clear line 15: It sets up a DO-CONTINUE loop from 
stack+1 to 15. Each iteration it: constructs fields LINE and LINE-7 and 
shifts them (=C). Then it replaces line 15 with spaces.  

That's it. With 10 lines of code I can define a text-editor. It's not the 
most efficient possible, but it's fast enough and illustrates many 
points: In dealing with small amounts of text, you needn't be clever; 
let the machine do the work. The verb LINE is an extremely useful 
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one; such useful verbs are invariably an empirical discovery. The 
verbs ,C and =C are the heart of the method; incidently, they only 
work on fields less than 64 characters. Notice how one definition 
wants to reference another (R used by I and D; LINE used by all). 
Notice how I and D are similar yet different. And notice how a few 
verbs eliminate a lot of bookkeeping and let you concentrate on the 
problem and not the details.  
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6. Programs with output 

By now I'm sure you're aware that the heart of your program is its 
control loop. It not only controls the operation, but also the 
philosophy and organization of the program. Let me review its 
operation: it reads a word, finds it in the dictionary and executes its 
code; failing that it converts it to a binary number and places it onto 
the stack; failing that it types an error message.  

So far I've ignored that error message; not because it's unimportant 
or trivial to implement, but because it's part of a diffcult subject - 
output. Logically I oughtn't have delayed discussing output this long, 
for even a control language needs output. But as usual in this 
program it is involved with other features that we've only just 
discussed. I'll leave it to you to implement those features of the 
output capabilities I'll present, that your application requires.  

Most compilers, and therefore most programmers, regard output the 
inverse of input. For example, FORTRAN uses the same FORMAT 
statements for output as for input, thereby suggesting that the two 
processes are very similar. But are they?  

You compose input: you select words and combine them into fairly 
complex phrases; your program spends considerable effort 
deciphering this input and extracting its meaning. In reply it will not 
go through any such elaborate procedure. You'll see that most of its 
output consists of the word OK. You are talking to the computer, but it 
is hardly talking to you; at best it's grunting.  

I maintain that the two processes have nothing in common, that the 
computer does not prepare output in a manner analogous to you 
preparing input. In Chapter 8 I'll describe a way your program can 
compose complex output messages. Although such a technique 
might provide a 2-way dialog, it has even less similarity to interpreting 
input.  
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6.1 Output routines 

You will need 3 output subroutines; conceivably you could get by with 
2. One to type a number of spaces. One to type a number of 
characters from a specified location (TYPEN). One to type characters 
until it encounters a space (TYPEB) and including the space. This last 
depends on your dictionary format, for it is used to type entry words. 
Of course, these should use the fetch and deposit subroutines you 
use for input.  

Let us use the composition of an error message as an example. You 
have just typed an input message, the carriage is positioned at the 
last character. First you want a space. Then use TYPEB to type the 
current word. It caused the error and will tell you where it occurred. 
You don't need this for an unbuffered device. Then use TYPEB again 
to type a word that describes the error. Avoid long error messages - 
you're the one who will wait while they're typed. You can detect a 
number of errors, so it's worth your while to devise a routine to 
generate them.  

After finding an error, you of course quit doing whatever you were 
doing. There is no point in trying to continue when you're standing by 
ready to correct and start again. However it is convenient to reset 
things that you'd probably have to reset anyway. In particular, set the 
stacks empty. This is sometimes unfortunate since the parameter 
stack might help you locate an error. But it usually is most convenient. 
Don't try to reset the dictionary since you're not sure what you may 
want to reset it to.  
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6.2 Acknowledgement 

I mentioned in Chapter 3 that you must write subroutines to send and 
receive messages. Now I must expand on exactly how you should use 
these subroutines.  

Recall that input and output share the same message buffer. This now 
causes trouble. However it considerably simplifies the more powerful 
message routines of Chapter 7. On balance the single message buffer 
seems optimal.  

First let me call the subroutine that sends a message SEND. It sends a 
single line and should add a carriage return to the line, as well as any 
other control characters needed, and translate characters as required. 
The routine that receives a message is QUERY. It is a routine, and not 
a subroutine. QUERY calls SEND to send a message, and then awaits 
and processes an input message. stripping control characters and 
translating characters as required. It initializes the input pointer IP 
and jumps to NEXTW. Notice that your program can send output via 
SEND wherever it pleases. However it can only receive input in 
conjunction with output, via QUERY. You have no provision for 
receiving successive messages without intervening output. This is 
exactly the behavior you need, and actually simplifies the coding of 
message I/O.  

Now let me describe the use of QUERY. Each input message is 
terminated with an end-of-message word, a non-printing character 
surrounded by spaces. This word has a dictionary entry that types the 
word OK and jumps to QUERY. Thus after interpreting each input 
message, your program types a brief acknowledgement - OK, 
message received and understood - and awaits further input.  

Notice that if an input message generates output it destroys itself. 
That is, the output is placed in the message buffer irrespective of the 
input already there. Thus a word that generates output should be the 
last word in a message, since succeeding words will not be seen. In 
particular, the end-of-message word won't be seen and the reply OK 
won't be typed. This is what you want: OK is only typed in lieu of any 
other output.  

OK should appear on the same line as the input message, separated 
from the last word by a least one space. QUERY should not 
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acknowledge receipt of a message - as most time-sharing systems do 
- with a carriage-return. The only acknowledgement is the OK at 
completion of interpretation. Placing OK on the same line helps 
distinguish output from input and compresses the conversation, 
especially valuable on a limited-size scope face. A user must not type 
input until he receives output. It's only important to enforce this rule 
with multi-user programs. For this see Chapter 7.  

In order to determine whether there is input in the message buffer, 
establish a field EMPTY. QUERY should set empty false and each 
output generating entry should set it true. Actually output generating 
verbs have much in common with each other, and each should jump 
to a routine that does the following: 

 Drop the stack. Each output verb must have an argument. Its 
last argument can be dropped at this point, and the stack 
pointer checked against its lower limit.  

 Set EMPTY true.  

 If NEXT contains NEXTW and SCREEN is 0, jump to QUERY. 
Under these circumstances there is no further input available 
in the message buffer.  

 Jump to NEXT. 

Notice that if entries are coming from a definition or from a screen, no 
conflict can arise with the message buffer. Only if input is currently 
being read from the message buffer is there a problem.  

However there are 2 places where source of input is changed. This is 
in the code for ";" and ";S". If ";" restores NEXTW to NEXT, it must 
guarantee that input is available. That is, jump to QUERY if EMPTY is 
true and SCREEN is 0. Likewise, if ";S" restores SCREEN to 0, it 
should jump to QUERY if EMPTY is true (NEXT is guaranted to be 
NEXTW.  

The logic required is summarized in Fig 6.2 and is the price paid for 
duplexing the message buffer. One final complication concerns 
EMPTY. If true, it states that input has been destroyed; it does not 
indicate that output is currently in the message buffer. Output may 
have been placed there and already sent. If the message buffer is 
empty, type OK before jumping to QUERY.  
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6.3 Character strings 

Everything isn't easy, and this particular feature is my nemesis. 
Perhaps a measure of its value is the difficulty of its implementation. 
A character string is an awkward entity. Mostly because there is 
nowhere to put it. Numeric literals go on the stack in a most natural 
fashion. Character strings won't fit, and that isn't what we want to do 
with them anyway.  

My solution is this. When you see a character string, leave it alone. 
Put on the stack a descriptor giving the address of the first charactere 
and the number of characters in the string. Skip over the string. That 
is, advance the input pointer to its end. You can't do it in quite that 
order, of course, because only by skipping can you discover the 
number of characters.  

What does a character string look like? Of all the ways you might 
choose, one is completely natural: 

 "ABCDEF . . . XYZ" 

A character string is enclosed in quotes. It can contain any character 
except a quote, specifically including spaces.  

We get in trouble immediately! How do you recognize a character 
string? By the leading quote, for course. But do you modify your word 
subroutine to recognize that quote? If you do so you may never use a 
leading quote for any other purpose. Much better that the quote is a 
word by itself, treated like any other dictionary entry, for it can then 
be re-defined. But words are terminated by spaces, and I still resist 
making quote an exception. So let's type character strings: 

 " ABCDEF . . . XYZ" 

The extra space is annoying, but in Chapter 8 I will tell you how to 
eliminate it without the objections I just raised. So a character string 
is started with a quote-space and terminated by a quote.  

Remember that we leave the character string alone, merely 
remembering where it is. We are talking about character strings in the 
input buffer (so far), and we had better use the string before we 
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destroy it with output or additional input. When it is destroyed 
depends on many things, so the best rule is to use it immediately.  

What can you do with a character string? I've only found 2 uses. They 
are very similar, but part of the frustration of implementing them is to 
take advantage of the similarity. You can type a string, or you can 
move it to a character field.  

To type a string is easy. Define an entry that uses the descriptor on 
the stack to set parameters for the TYPEN subroutine.  

To move a string is harder, but still easy. You have 2 descriptors on 
the stack: on top a field descriptor; below the string descriptor. Set 
the input and output pointers, and do a character move of length the 
smaller of the 2 field sizes. Space fill the remainder of the destination 
field. Notice that you mustn't move more characters than you have, or 
will fit. And of course, string descriptors will rarely have the right size. 
Truncating a string is not an error condition!  

If you can do the above, you can also move one character field to 
another. That is, if you make your character string and field 
descriptors compatible - which adds to the fun. You might want to 
prevent moving a field to a string, but than who cares.  

The problem is to reconcile all the above requirements. Not really to 
produce optimum code, but even to produce code that is remotely 
acceptable in size, speed, restrictions and correct operation.  

We've slid into the subject of field descriptors. You might want to type 
a character field, and of course the same code should work as for 
string descriptors.  



– 103 – 
 

6.4 Field entries 

We've talked about the different kinds of numbers you might want, 
and the different entries these require. However, all these entries dealt 
with computation. Another kind of entry is useful for more 
sophisticated output purposes. I call it a field-entry because its most 
common use is to define a field in a data record.  

In addition to the descriptor associated with a variable, a field entry 
needs additional parameters that specify the output format. It is 
extremely useful to be able to specify a field width for output once 
and for all, and then use it automatically on all reports. Also it is 
useful to be able to reference the name of the field - which of course 
is contained in the dictionary entry.  

So a useful convention is that a field entry puts the address of itself - 
that is the dictionary entry - on the stack. Recall that a variable entry 
places the address of the variable on the stack. If you want the name 
of the entry, this address tells you where it is. If you want the format, 
this address - offset by some constant - tells you where to find it. And 
if you want the address of the field, you can get that too - a process 
that is executed automatically for a variable.  

These various capabilities require various entries to affect them. You 
might define: 

 ,NM - type out field name.  

 F - extract field width.  

 @F - obtain field address. 

Depending (as usual) you might be able to make @F compatible with 
@. Or make @ automatically work correctly for field entries. You may 
want to distinguish addresses of variables from address of field 
entries. This would be analogous to distinguishing different kinds of 
numbers, and for the same reason - so that the same operations (in 
this case probably @ and =) will work on all.  

Apply the Basic Principle.  
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7. Programs that share 

It is not obvious, but a program organized as we have discussed is 
ideally suited to handling several users simultaneously. All of the 
basic problems of interactive processing have been solved by 
interacting with one user. The organization is such that all data is, or 
can be, stored in the user's dictionary. To distinguish users merely 
requires the program recognise the proper dictionary.  

Of course the value of multiple users depends upon the application. 
There appears to be a correlation between the complexity of an 
application and the number of potential users. An application that 
deserves a problem-oriented-language my well be of interest to many 
users on a continuous basis.  

Moreover, once the basic program is available, it is relatively simple 
to add other, even unrelated, applications. The ability to control your 
vocabulary by reading screens allows a terminal to be used by 
different people with absolute minimum effort: each can have a 
personal screen that will load his dictionary with the vocabulary he 
wants.  

Providing the message traffic from any one terminal is low enough, as 
is inevitably the case - for we have in effect slowed the computer 
down to human speed - we can handle a much larger number of 
terminals than can fit in core, hundreds, by storing inactive users on 
disk.  

However there is a cost, primarily of assuring that re-entrant 
programming rules are strictly followed. The additional code required 
to switch the computer's attention among users and the additional 
core required for disk buffers and user dictionaries demand that a 
single user application by de-bugged first. And then the capacity of 
the computer multiplied with a multiple-user control routine as the 
demand develops. It is all too easy to get bogged down in the 
multiple-user controller and never to perfect an application. Or to 
perfect a multiple-user control and never to find a demand to justify it.  

Given a successful single-user application, I will show how it can be 
expanded to many users. If you plan to take this step, there are 
certain precautions you should take with your original implementation. 
But mind the Basic Principle!  
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7.0.1 Non-user activities 

Each user has a position in the ready table to identify his status. The 
computer examines this table to decide what to do next. You may 
want to add to the ready table entries not associated with users, but 
representing tasks that must be performed by the computer.  

For example, if you have to poll phone lines to acquire input, you want 
to perform these polls asynchronously with whatever other work 
you're doing. Since interrupt routines are best kept small, the task of 
translating character sets, checking parity, distributing messages, ets. 
should be performed at lower priority. This is easy to do with an entry 
in the ready table. The interrupt routine sets a message routine 
"ready" and the computer will process it when possible.  

Each such independent activity should have a ready table entry and a 
(perhaps) small dictionary in which to store its parameters; return 
address, register contents, etc. in the same format as a user activity. 
In fact these activities are competely equivalent to users, except that 
they don't process users. This is significant, for it means they never 
generate error messages, they must handle their own errors, 
somehow.  

If you haven't already noticed, we're now talking about operating 
systems. I don't have much more to say on the subject, but there are 
other asynchronous activities you might want: 

 A clock to handle the timer interrupt and maintain a time and 
date in core and disk. It might ready other activities that 
relinquished control for a fixed time.  

 A routine to write blocks on disk. Periodically it might scan the 
block buffers for blocks to copy. (however, writing blocks 
when the read routine needs a buffer seems simpler.) 

Such activities cost little, and usually provide the simplest answer to 
any asynchronous problem. Mind the Basic Principle, though!  
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7.0.2 Message handling 

If you can read input from one user, you can read input from many. 
You must get an interrupt that tells you input is available and from 
whom it comes. You simple direct it to the proper message buffer. 
Likewise with output.  

It needn't be simple, but it certainly depends on hardware exclusively. 
If you have to poll terminals, it can become very interesting, indeed. 
But the problem remains beyond the scope of this book.  

If all your users are not core resident, it is better if none of them are. 
Then any input message can be written into the message buffer area 
on disk. And all output messages read from disk. The fact that some 
users might reside in core, causes an unreasonable complication, and 
the fact that disk access is fast compared to message transmission 
means that to attempt to save such disk accesses is not efficient.  
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7.1 User control 

The fact that you have several users creates a new problem. Of 
course the computer can only process one user at a time (we assume 
a single processor). But when it's finished with one user, it must 
switch its attention to another.  

When is it finished with one user? Clearly, if a user is awaiting input 
the computer is finished. We are talking about keyboard input, which 
will take many seconds to arrive. Similarly if the user is sending 
output, the computer may as well stop. Output will take several 
seconds, especially if an acknowledgement from the device is 
anticipated. It needn't stop. While sending one message, it could be 
composing the next. But it's much simpler not to attempt such 
overlap. If the user is reading disk, the computer can stop.  

I want to define a single phrase to cover these situations. I shall say 
that a user relinquishes control of the processor whenever he does 
message or disk I/O. This is a voluntary action on his part, and those 
are the only times he relinquishes control. In particular, there is no 
time quantum that will take control from him. For this reason: With 
several users, code must clearly be re-entrant. However, if a user is 
promised that he will be allowed to finish what he starts, if he will not 
lose control to someone else except when he relinquishes it, the re-
entrant requirements become much less onorous. The program need 
only be re-entrant across I/O, which can save a lot of bother.  

All right, what happens when a user relinquishes control? The 
computer simple scans a table of users to see if anyone else is ready. 
The table contains the address of the user's dictionary and a flag: 
ready or not? The I/O complete interrupt routines simply mark the 
proper user ready. And if no one is ready, the computer scans the 
table endlessly - it's got nothing better to do. Naturally, upon program 
start-up, no one is ready.  
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7.2 Queing 

You can save yourself a lot of trouble by putting some code in the 
user controller. Two subroutines: QUE and UNQUE. When a user 
needs a facility that might be in use by someone else, he calls QUE. If 
it's available, he gets it. If it's not available, he joins the que of people 
waiting for it. When it is released, and his turn, he will get it.  

For example, he can't read disk if someone else if reading disk. Or at 
least he can't use a particular channel or device. While he's waiting, of 
course he relinquishes control. When he's through with the facility, he 
calls UNQUE which passes it to someone else.  

These are extremely valuable routines, for there are many facilities 
that can be handled in the manner; each disk, each line (shared lines), 
the printer, block 1 (disk allocation), non-re-entrant routines (SQRT). 
An extension will even permit exclusive use of blocks.  

Naturally, I have in mind a specific way to implement QUE and UNQUE. 
And I caution you, more strongly than usual, that plausible 
modifications won't work. I'll try to mention all the reasons.  

In addition to the user's dictionary address and ready flag, each user 
must have a link field - not in his dictionary, but in user control. Each 
facility that is to be protected must have associated with it 2 fields: 
the owner, and the first person waiting. The best arrangement is to 
have a table of such que-words, one for each facility. If a facility is 
free, its owner is 0; otherwise its owner is the number of the user 
owning it. A user's number is his position in the table of users, 
starting at 1. If no one is waiting, a facility's waiter field is 0; otherwise 
it is the number of the user waiting.  

If I want a facility and its free: 

 I place my number in the owner field and exit. 

If it's busy, but no one's waiting: 

 I place my number in the waiter field, 0 my link field, and 
relinquish control. 
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If someone's waiting: 

 I follow the chain of links starting at the waiter's link field until 
I find a 0 link; I place my number there, 0 my link field, and 
relinquish control. 

When I'm through with a facility (UNQUE): 

 IF no one's waiting, I 0 the owner field, and exit.  

 If someone's waiting, I move his number to the owner field, 
move his link field to the waiter field, mark him ready, and exit. 

The whole procedure is simple and efficient. It handles a lot of 
potential problems in a reasonable and effective way. Several 
comments: The ques will probably be very short. In fact, facilities will 
usually be free, unless the computer is over-loaded. A user can not be 
in more than one que. However, a user can own more than one facility. 
Hence the need for a waiter field with each facility: a que must 
descend from each facility, and not from each owner; the two 
concepts are independent. You must add to the error routine a loop to 
release any facilities held by the current user. Since a user needs to 
know his own number in order to que, this number must be stored in 
a field in his dictionary, and be set by the re-initialize routine.  

It's complicated, it's troublesome, and it's the price you must pay for 
multiple users.  
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7.2.1 Usage 

To gain exclusive use of a block, with the exception of block 1, best 
handled as an exception, set aside some facility que-words for this 
purpose. Find a free one and store the block number it represents 
somewhere, then treat that block like any other facility. When the last 
waiter releases the block, release the facility que-word for re-use. 
Notice that this technique has no effect upon the block itself. It may 
be resident in core, or not. Anyone may read or write it. However, no 
one else may have exclusive use of it. If all users cooperate to request 
exclusive use when the should, it works perfectly - with no extra cost 
to ordinary reads/writes. Actually, exclusive use of a block is 
necessary only under exceptional circumstances. Block 1 is an 
example of such: The block may not be used by anyone else until 
another block has been read, and the available space up-dated.  
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7.3 Private dictionaries 

The key to the case of conversion to multiple users is that all required 
information about a user is stored in his dictionary - a single 
contiguous area of core. He makes extensive use of code that 
belongs to the system, and that does not reside in his dictionary. On 
the other hand, code unique to his application may reside there. Here 
is the first decision that you must make: What belongs in the user's 
private dictionary?  

Let us look at the arrangement of core. If we choose, and we should, it 
follows dictionary format: each entry followed by the code it executes. 
Each entry is linked to the previous so that the dictionary may be 
searched backwards. Some entries are obviously of interest to all 
applications: those that control the stack, that define dictionary 
entries, that specify fields such as BASE, CONTEXT, etc. Other 
entries are probably of local concern: the names of fields in records, 
definitions used to edit text, special purpose code (random number 
generator, square root, etc.). At some point you must separate the 
system and user dictionaries.  

If you establish several user dictionaries, the first entry in each will 
link to the system dictionary (Fig 7.1) at the same point. Thus each 
user is unaware of any other user, and his dictionary search is 
unaffected.  
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7.3.1 Memory protection 

If all users will fit in core simultaneously, we are finished. You divide 
memory into the appropriate dictionaries. You should provide 
memory protection so that one user cannot damage another. The 
stack and dictionary size checking discussed earlier, should be 
augmented by checks on the = operator, so that a user cannot write 
outside his dictionary, or outside a block he has read. If you have 
hardware memory protect, you will find it difficult to take advantage of. 
The user must be able to read his dictionary, the system dictionary 
and the block buffers; he must be able to write his dictionary and the 
block buffers. Several users might want to write the same block 
buffer; if not simultaneously, at least consecutively. If your hardware 
can help, it's better than any I've seen. But software protection can be 
made adequate - except against malicious mischief.  

Although a user cannot hurt anyone else, he is certainly capable of 
destroying himself. Thus you should have a system entry that will 
restore his dictionary to empty, with all control fields reset. Such an 
entry will get heavy use, for it is a simple way to start over.  

If you have implemented fixed-size entries, you have no links to lead 
to the system dictionary. Your search routine must separately search 
the user's dictionary and the system dictionary, since not all users 
can be contiguous to the system. This should only cost a few 
instructions, but is another reason to prefer the linked entries.  

If you have multiple chains in your dictionary, each chain must jump 
from the user's to the system dictionary. This is only a problem when 
re-initializing the dictionary, and can be easily solved by keeping a 
copy of the chain heads for the system dictionary.  
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7.3.2 Controlled access 

It would appear that you want the system dictionary as large as 
possible to avoid redundancy. That is not necessarily the case. There 
are some entries that might go into the system dictionary - except that 
you specifically want to deny them to some users. Prime examples 
are the GET and DELETE entries that control disk allocation. Misuse 
of these words by ignorant users can badly damage data stored on 
disk. The best solution is to place the code in the system, without a 
dictionary entry. Define a table of entry points into code of this nature. 
Then if a user wants to use an entry point, he must first define it, 
perhaps: 

 17 ENTRY GET 18 ENTRY RELEASE 

establishing the words GET and RELEASE with the code identified in 
the 17th and 18th table positions. Library subroutines (FORTRAN 
arithmetic subroutines) might be treated similarly.  

Incidently, this illustrates a general method of protection: In addition 
to using a word, the user must define it correctly. Clearly you can 
cascade the process. The value of such protection against malicious 
mischief depends on secrecy, which is always the ultimate protection. 
However even in the absence of secrecy, it provides valuable 
protection against inadvertant damage.  
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7.4 Disk buffers 

The fact that you may have several users reading disk simultaneously 
has no effect at all upon the disk-access subroutine. It can search the 
block buffers and find an available buffer without concern as to who 
asked for it. Of course you must have at least as many buffers as 
users. In fact, all of core not required for dictionaries might as well be 
devoted to block buffers, as left idle. However, if a block is being read, 
you should mark the buffer busy some way, so someone else will not 
assume it's there before it arrives. If you attempt to read a busy block, 
you should relinquish control and try again when you're re-started.  
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7.5 User swapping 

So far we've had all users resident in core. This is by far the best 
arrangement for handling a small number of users. The step to 
allowing more users than can be simultaneously resident is a small 
one philosophically, but can be very difficult to implement. Suppose 
we had room for 4 user's dictionaries in core, but we wanted to permit 
40 users. Clearly we can store all 40 user dictionaries on disk and 
load each one into core when he becomes active. Providing disk I/O is 
substantially faster than message I/O there is not even a performance 
penalty associated. When a user is awaiting message I/O we write him 
out to disk. When he completes his message I/O we read him back 
into core. Naturally, we do not move him from core when he is waiting 
for disk I/O, since it would take unreasonably long to write him out 
and read him back compared to the original delay.  

So far there are no problems. The problem arises as to where to read 
him back into. We have 4 buffers: if we load users always into the 
same buffer we have 4 classes of users, each of which can go into a 
single buffer. We are begging for delays at one buffer while another is 
empty.  

If we are going to the trouble anyway, we should make all buffers 
equivalent, and load a user into whichever one is free. However, now 
a user's dictionary must be relocatable. That is, any references to his 
dictionary must be relative to its origin, which is presumably stored in 
an index register. This isn't too bad if we've planned from the start - 
way back with a single-user program - to make all dictionary 
references relative; it requires almost a complete re-write of the 
program if we did not, for all dictionary references, and they're 
scattered all through the program, must be indexed.  

Actually, since any references to a block must be relative to the 
(variable) origin of the block, we aren't introducing a new problem; 
merely extending an old one. However, there's another complication. 
We now have a real distinction between our 2 dictionaries: the system 
dictionary is absolute and the user dictionary is relative. Therefore the 
same kind of entry must be treated differently, depending on which 
dictionary it's in.  
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For example, if we have compiled code in the parameter area, an 
absolute user dictionary can store the code address in the address 
field. However a relative user dictionary must store the address of a 
routine that will, in turn, jump into the parameter field. Or else relative 
addresses must be distinguished from absolute addresses, perhaps 
by size, and treated properly.  

To avoid impossible difficulties, you should be careful to write your 
single-user program with the following constraints: 

 Reserve an index register for a user pointer, the origin of the 
user's dictionary, andd use this index. That is, treat the 
dictionary as relative, even though you needn't.  

 Make all code re-entrant. At least all code within which a user 
might relinquish control - which turns out to be most code. 

Do this if you have the slightest intention of implementing a many-
user version. This violates the Basic Principle, but we're dealing with 
such basic issues as to be worth it.  
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8. Programs that think 

The mystery of consciousness has intrigued philosophers for a long 
time. It now seems apparant that just as life is a result of complex 
organization, so is consciousness. It is somehow a byproduct of 
complex interactions among data. Interactions so complex they only 
occur in mammalian brains.  

Therefore, one way of investigating the mind is to experiment with 
manipulating data. The obvious way to do this is on a computer. We 
now have a program with capabilities previously unattainable. Why 
not use it in such a way as to probe the realm of 'thinking'? I don't 
propose that you become a psychobiologist. But you can have a lot of 
fun, and do some really impressive things with simple extensions to 
your program.  

I will describe a number of entries of unusual capability. If you have 
an application that can use them, or if you can create an application 
to use them, by all means give them a try. However, the Basic 
Principle forbids you including them without a purpose. They are 
sufficiently elaborate and sufficiently specialized as to never prove 
unexpectedly valuable.  

I have had all the entries I describe in a single program. This program 
had less than 1500 instructions so it is practical to include everything 
in a single program. But I was experimenting, and never found an 
application that needed a fraction of them.  
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8.1 Word dissection 

One of the most awkward characteristics of our program is that words 
must be separated by spaces. Very often you'd like to suffix 
punctuation or operator without an intervening space. And we will 
soon add abilities that make prefixing desirable, too.  

It is not difficult to modify the word subroutine to recognise 
characters other than space as terminating characters. But it is 
impossible to provide satisfying generality. Inevitably, you complicate 
the word subroutine unduely by considering innumerable special 
cases. And you can waste much ingenuity trying to achieve generality. 
For example, there are no simple rules that permit all these to be 
words: 

 HELLO GOOD-BY 3.14 I.B.M. -.5 1.E-3 

Likewise, there are no simple rules that separate these strings into 
the words intended: 

 -ALPHA 1+ ALPHA+BETA +X**-3 X,Y,Z; X.OR.Y 

But don't dispair! There is a general solution that can handle all these 
cases. It is expensive in time, perhaps very expensive. But it solves 
the problem so thoroughly, while demonstrating that no lesser 
solution is possible, that I consider it well worth the price. Besides, 
the speed of processing text is not a critical factor. We maximize 
speed precisely so that we can afford extravagances such as this.  

If you haven't already guessed: We read a word terminated by a space, 
search the dictionary, convert it to a number. If it isn't a word by this 
defintion, we drop the last character and try again. Eventually we strip 
off enough characters so that the remainder is a word.  

Let me review the cost. We do as many dictionary searches (plus 
numeric conversions) as there are letters to be dropped. This 
encourages fast searches and quick recognition of non-numbers. It 
also encourages minimizing the length of strings that must be 
dissected. But let's be practical: The number of occassions when 
dissection is convenient are few enough that you can afford the price. 
With the exception of compiler source code. But I'm not writing a 
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compiler, and if you are you can probably make your word subroutine 
cope.  

There are several things to be careful of: As you drop characters from 
the aligned word, you must keep track of your current position within 
this word. However, you must also back-up the input pointer so that 
you can start the next word correctly. Incidently this requires an initial 
back-up over the terminal space that is not repeated.  

Backing the input pointer is not possible with unbuffered input. This 
is why I suggested that you buffer un-buffered devices back in 
Chapter 3. If you aren't going to dissect, apply the Basic Principle.  

You must also have a way to detect that you have dropped the last 
character: a counter is one solution. Another is to place a space 
immediately ahead of your aligned word, and to stop on the space. I 
prefer the second, for I find I lack a convenient counter that is 
preserved over dictionary search and numeric conversion. But this 
means that I must fetch each character before I deposit a space over 
it. And this means that my fetch subroutine must operate backwards, 
the only place I ever need to fetch backwards. It depends on your 
hardware.  

There are 2 things we can do to refine this dissection. They are 
incompatible and the choice depends on your application: We don't 
need to drop characters one-at-a-time. If you have several letters in 
succession, or several digits, or perhaps a combination, you might 
drop the all and then perform a single search/conversion. This means 
that you must examine each character (which suggests the second 
termination above). It also means that you must be able to distinguish 
alphanumerics from special-characters. This requires a 64-character 
table of character type tailored to your particular character set and 
application. If your hardware permits, you may be able to use a 64-bit 
table - classic trade-off of time vs. space.  

However, this means you cannot dissect letter strings and you might 
want to. Plurals, for instance, can be easily accomodated by dropping 
the terminal 's'. On the other hand, you can easily mis-identify words 
by dissecting letter strings: I once dissected the word SWAP: S was 
defined, W was defined and my error message was AP ? Perhaps 
when dropping a single letter you should replace it with a dash to 
indicate a word stem. Or perhaps it doesn't matter if unidentifiable 
words are mis-identified.  
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One further caution: If you are going to dissect, you must not discard 
extra characters while initially aligning the word. Your input pointer 
must be positioned so that you can backspace it correctly. If you 
exceed maximum word size, stop immediately and supply a terminal 
space. This means that no single word can exceed maximum size, 
which has now become maximum string size.  

Another optimization has to do with the size of words in the dictionary. 
If you only match part of the word, you may as well start dropping 
characters at that point, if number format permits.  

What does word dissection mean to a program? How does it help it 
'think'? It means that your program can read your mind. It means that 
no matter how you type something, the computer will extract the 
meaning you intended. It will use the meaning of the longest character 
string it can, consistant with a left-to-right scan. It's not infallible: if 
you define +1 and then type +1000 it will mis-understand. But if you 
use your language consistantly, it will follow.  

I would like to be able to say that this ability will impress people. It will 
impress you - at least it should. But ordinary people, like your boss, 
expect this kind of ability from computers. They are only impressed, 
negatively, if they discover its absence.  
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8.2 Level definitions 

I am embarrassed not to know the standard terminology for what I am 
going to discuss. I have never heard it discussed and I have never 
searched for it. But it must be a standard aspect of compiler writing - 
discussed in courses dealing with compilers. If you know the 
terminology, you also know most of what I'm going to say: although I 
hope I can get you to stretch its application.  

Our arithmetic operators have found their arguments already on the 
stack. Conventional algebraic notation uses such operators as infixes, 
and a left-right scan provides only 1 operand when the operator is 
discovered. Consequently the operation must be deferred until the 
other operand is available.  

Moreover, we have a hierarchy of operations than control when that 
other operator becomes available. For example: 

 A+B*C 

the multiply must be done before the add. Moreover, parentheses are 
used to modify the standard heirarchy: 

 A*(B+C) 

Such a notation is competely equivalent to ours. It offers no 
advantages over the operands-preceeding-operator and has some 
limitations. But people are accustomed to it and negatively-impressed 
by its absence. So I will show you how to provide the capability.  

However there is no reason to restrict our attention to the customary 
arithmetic and/or logical operators. I will show you some other similar 
heirarchies. The capability I describe will handle them all.  

Let us establish a new kind of dictionary entry. It is identical to a 
definition except that it has a number appended, a level number. So 
let's call it a level-definition. The rule is that a level-definition is not to 
be executed when it is encountered, but rather placed on a push-
down stack. It will be executed when another definition with a equal or 
smaller level number is encountered.  
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A convenient format for level-definitions is: 

 2 :L word . . . ; 

The 2 is the level number, taken from the stack. :L declares the next 
word as a level-definition. ';' marks the end.  

Let's talk about + and *: 

 0 :L , ;  

 1 :L + + ;  

 2 :L * * ; 

We have re-defined them in terms of their old definitions, but as level-
definitions. We defined ',' to have some way to stop. Now we can say: 

 3 + 4 * 5 , 

What happened? 3 goes onto the parameter stack, + goes onto the 
level-stack, 4 onto the parameter stack, * onto the level-stack (since it 
has a higher level number than the + already there), 5 onto the 
parameter stack. Now ',' forces the * to be executed (since its level 
number is smaller) and * finds 5 and 4 on the parameter stack. ',' also 
forces + to be executed (with arguments 20 and 3) and then, because 
its level number is 0, is itself executed and does nothing.  

Clear? I would like to assume you're familiar with this technique, but I 
don't quite dare. All I'm really contributing is a way to implement with 
dictionary entries a technique usually built into compilers. Perhaps 
the cop-out of suggesting you define the arithmetic operators and 
work out some examples for yourself. Remember that equal level 
operators force each other out, and that a lower level operator forces 
out a higher. It is strangely easy to reason out the relative levels of 
operators incorrectly.  

What do we have so far? Why should you be interested in level-
definitions? You've seen a couple, their definitions are simple. Level-
definitions tend to be simple compared to ordinary definitions. But 
given level-definitions you can write a compiler, for any language! 
Level-definitions are necessary and sufficient to implement any 
context-free grammer, not only the LR-1 grammers at the base of 
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contemporary languages. Frankly I don't know what to do with the 
power they provide, but I'll toss out some suggestions later.  

Now back to work. You've seen some level definitions. I hope you've 
played with them some. How do we implement them? Well we don't. 
Rather we implement a generalization: level-entries. When I found an 
application for level-entries I also found out it was cheaper to 
implement level-definitions as such than the way I was doing.  

Every dictionary entry may be considered a virtual-computer 
instruction, as discussed in Chapter 5. We consider a level-entry an 
instruction whose execution can be delayed - after the fashion of a 
level definition. Why not? A definition is, after all, only a particular 
sort of instruction. If it may be profitably delayed, so might other 
instructions.  

I'm sorry if it seems complicated. It is! It's going to get more 
complicated - you aren't getting something for nothing. But it's worth 
it. However, notice that everything we're doing now builds on 
everything we've done before. Notice that the concept of a special 
sort of entry depends on having a dictionary available; and the 
extension of definitions to include level numbers depends on having 
definitions. We are gradually building a tree and are in the higher 
branches. We might not depend on all the lower branches, but we 
have to have some.  

How do you execute a level-entry? Exactly the same as any other. 
However, the first thing the level-entry does is execute the LEVEL 
routine, to give it a name, with its level number as parameter. LEVEL 
tests this level number against the level-stack. 3 cases arise: 

 It may place the level number and entry on the level-stack 
(higher level entry) and RETURN.  

 It may replace the top of the level-stack with this entry, and 
execute the old top.  

 If the level-stack is empty, and the level is 0, it will execute this 
entry. 

All 3 cases are required!  

Before actually executing an entry from the stack, LEVEL must set the 
SOURCE address to reference another routine, FORCE. You recall 
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that your main control loop obtains its next entry either by reading a 
word and searching, or by fetching from a definition. Well here is a 
third source, the level-stack. As for a definition, the old value of 
SOURCE and the virtual-IC must be saved - on the return-stack.  

When you finally force execution of a level-entry, you must remember 
that it has already been executed, and immediately jump to LEVEL. 
This re-execution must start at a different place, 1 or 2 instructions 
below the routine address, perhaps. Or you might include the re-start 
address as a parameter, and keep it in the level-stack.  

When a level-entry is done, it will RETURN and your control loop will 
go to FORCE. The only way you can get to FORCE is by completing a 
level-entry. Its function is to check the level stack and see if any other 
entry can be forced off by the one on top. 3 cases arise: 

 It may leave the level-stack alone (higher level on top), and 
restore SOURCE and virtual-IC from return-stack, and 
RETURN.  

 It may execute the lower entry, replacing it with the top - thus 
dropping the level-stack.  

 If there is no lower entry, and the level is 0, it will execute the 
top entry - thus emptying the level-stack. At this time it will 
restore from the return-stack. 

Let me emphasize the importance of the return-stack, and the 
necessity of saving SOURCE. If a level-entry is in fact a definition, 
SOURCE will be reset yet again. It may be some time before we return 
and encounter FORCE once again. For in fact, a level-definition may 
occur within a definition; and it may execute other definitions - indeed, 
other level definitions. The whole process may become 
incomprehensibly enmeshed, and indeed it does in practice. But it will 
sort itself out. The beauty of definitions, level-definitions particularly, 
is similar to that of recursive functions. You need consider only the 
simple case when making the definition; complex cases take care of 
themselves.  

Now you should be able to implement level-entries, definitions among 
them. What can you do with them? 

 You can define the customary arithmetic operations: + - * / 
MOD **.  
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 You can define the customary logical operations: OR AND 
NOT IMPL.  

 You can define infix relations: = < > <= >= /=.  

 You can define an infix replacement: = := (one that works in 
either direction).  

 You can define all the above. 

It depends on your application. 

 You can define words like PLUS MINUS TIMES DIVIDED-BY 
EQUALS; an English language arithmetic.  

 You can define phrases like MOVE . . TO . . or DIVIDE . . INTO . . 
or ADD . . TO . . A COBOL language arithmetic. 

But let me mention 2 particular uses: 

 Consider a statement with the form 
o IF relation THEN statement ELSE statement ; 

Define IF so it will be forced out by THEN and generate a 
conditional branch. Define THEN so it will be forced out by 
ELSE and fix-up the adddress left dangling by IF. Define ELSE 
so it will first generate an unconditional branch, then force out 
THEN, and then await being forced out itself. Define ; to force 
out ELSE and fix-up the forward branch. 

With a few statements you can implement any such compiler 
construct. 

 Consider a statement like 
o 1800. FT / SEC ** 2 

Define a kind of entry UNIT that puts a constant on the stack 
immediately and acts like a multiply when it's forced to. Define 
/ to put a 1. on the stack immediately and divide when it's 
forced to. Define ** as an infix, and FT and SEC as UNITs. 

This expression and any others you construct will be evaluated 
correctly.  
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I pass the ball to you. If you have an application that could profit from 
a natural language input format, you have the capability with level 
definitions to implement it. For example, it would not be hard to teach 
your program to solve the problems at the end of a high-school 
physics text.  

Keep in mind, that level-entries do not enhance the power of the 
computer. They merely let you specify instructons in what, to the 
computer, is an unnatural order. You are well advised to get your 
application working, and then to append a fancy control language.  

How does this relate to a program 'thinking'? Solely by deferring to 
the human-oriented format of control languages. Not even this is 
impressive to anyone but us! And even how impressed are you by 
FORTRAN's expression evaluator any longer?  
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8.3 Infinite dictionary 

I would guess that your dictionary will average several hundred 
entries. Even a small amount of data seems to generate a large 
number of fields - to mention one source. However some applications 
need much larger vocabularies. Perhaps you need to identify one of 
10,000 customers; or maybe you want the symbols for 104 elements 
available; or the names of 1000 approved additives.  

Clearly such volume must be stored on disk. Also clearly, you don't 
want to have to search disk explicitely. There is a gratifyingly effective 
solution: If you can't find the word in the core dictionary, and it's not a 
number, search a block on disk. Now the question reduces to: Which 
block?  

Establish a field called CONTEXT. Treat it like you did a block 
address: it both identifies a block and suggests where it might be in 
core. Search this block. By changing CONTEXT you can search 
different disk dictionaries. By linking several blocks together, you can 
search larger amounts of disk; or search several dictionaries in 
sequence.  

You can afford to search a fair amount of disk, because if you can't 
find the word you're going to generate an error message. A delay in 
typing that message to make sure you can't find the word, is an 
excellent investment. Still for really large vocabularies - thousands of 
entries - such an approach is inadequate.  

For very large dictionaries, scramble the word into a block address 
and search that block. By that I mean compute a block address from 
the letters in a word, just as we did for multiple chains in the core 
dictionary, though you'll probably want a different algorithm. You can 
search one of a thousand blocks and be assured that if the word is 
anywhere, it's in that block. Because you used the same scramble 
technique to put it there as you use to find it. Since many words will 
scramble into the same block, you of course search for an exact 
match. Again, just as in core. With such a large disk dictionary, you 
want to be careful of several things. First, once you choose a 
scrambling algorithm you can never change it; so make a good 
choice before you define lots of entries. Second, try to keep the 
number of entries roughly the same in all blocks; and roughly equal to 



– 128 – 
 

half the capacity of a block - to compensate for the first "roughly". Or 
else provide for overflow by linking blocks together.  

Such a disk dictionary can be really impressive - even to non-
computer folk - because you have fast access to a prodigous 
vocabulary. Fast means you can search tens-of-thousands of entries 
in a single disk access.  

What do disk dictionary entries look like? I have found that 2 fields 
are sufficient: the word field, the same size as the core dictionary 
word field; and a parameter field, 1 word long. If you find a match on 
disk, you put the parameter on the stack. Remember that you can't 
afford to store absolute addresses on disk, so you can't have an 
address field as in core. You could provide a coded address field, but 
it seems adequate to treat disk entries as constants.  

For instance you can name blocks. When you type the name of a 
block its address is moved from the parameter field onto the stack. 
That is an excellent place for it, because if you type the block number 
itself that's where it would be placed. You can use block numbers and 
block names interchangeably. Thus when you type an account 
number the block associated with that account is placed onto the 
stack, whereupon you store it into the base word that its fields 
reference. An illegal account will cause an error message, in the 
ordinary way. Or you might name the instructions for your computer. 
Then typing its name will place a 1-word instruction on the stack, 
ready for further processing.  

Although I spoke of account numbers, notice that you can't number 
blocks. That is, the name of a disk dictionary entry cannot be a 
number. For if you type a number it will be converted onto the stack, 
and never sought on disk. And you must attempt to convert before 
searching disk or you'll search disk for every literal you type. But then 
"numbers" often don't look much like the numbers defined by 
NUMBER. They tend to have embedded dashes, letters and such; or 
else you can prefix a letter or suffix a # character.  

How do you put an entry on disk? A special defining entry: 

 0 NAME ZERO 
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analogous to CONSTANT. Alternatively you might set a flag and let 
the dictionary entry subroutine decide whether to use disk or core. 
This latter is preferable if you have several dfferent kinds of entries 
that might go either to disk or core.  

You will also need a way to forget disk entries: 

 FORGET ZERO 

FORGET must call WORD as defining entries do, since this is a non-
typical use of the word ZERO. When it finds the entry, it simple clears 
it without trying to pack. Your entry routine should first search disk to 
see if the word is already there. You don't want multiple definitions on 
disk, even though there're useful in core. Then it should search for a 
hole. If it finds the word already there, or if it can't find a hole? You 
guessed it, an error message.  

Let's talk about a refinement. With a thousand names on disk it's easy 
to run out of mnemonics. Let's re-use the field CONTEXT: after you 
scramble the word into a block address, add the contents of 
CONTEXT and search that block. If CONTEXT is 0, no difference. But if 
CONTEXT is non-zero, you're searching a different block. If CONTEXT 
can vary from 0 to 15, you can have 16 different definitions of the 
same word. You'll find the one that had the same value of CONTEXT 
when you defined it. If there is no entry for a word under a given 
CONTEXT, you won't get a match. A block containing a definition for 
the same word under a different CONTEXT won't be searched.  

For example, stock numbers might look the same for different sales-
lines. By setting CONTEXT you can distinguish them. You can use the 
same name for a report screen that you use for its instruction screen; 
distinguish them by CONTEXT. If you're scrambling anyway, you may 
as well add in CONTEXT (modulo a power of 2); it costs nothing, and 
vastly extends the universe of names. In fact, you can use CONTEXT 
in both the ways we've discussed, simultaneously. For as an aditive 
constant it tends to be small; and as a block number, large. So your 
search routine can decide whether to scramble or not based on its 
size.  

A problem arises if you plan to dissect words. All those extra 
dictionary searches are augmented by disk searches and their 
attendant disk accesses. Several solutions are possible: Scramble 
with only the first couple of characters, so at least the disk searches 
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are in the same block - which will be in core. Or use only non-zero 
values of CONTEXT and let 0 inhibit the disk search. That is, make 
dissection and disk searching mutually exclusive. As is often the case, 
the problem is serious only if you aren't aware of it.  
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8.4 Infinite memory 

Of course you can't really have infinite memory. Not even unlimited 
memory. But you can access directly the entire random memory 
available to your computer. A small augmentation of the field entries 
introduced in Chapter 4 will do it. I postponed the discussion to here 
because it has no particular connection with output, and because it's 
impressive enough to relate to 'thinking'.  

The problem of what to do with infinite memory, I leave up to you. You 
will have to organize it somehow. Examine different parts of it, move 
fields around, what you will. All I can do is show you how to eliminate 
any explicit reference to disk.  

Let's include in our field a parameter that points to a disk address. 
The field is assumed to be relative to that address; that is, contained 
in the disk block. The program will automatically read the block to 
obtain the field. Of course a number of fields will point to the same 
block address.  

Before you start objecting, let me rush on. Stored with the block 
address is the location of the core buffer that block last occuppied. 
So the program needn't actually read disk, or even search core 
buffers for the block, unless the block has been overlaid. Hence 
repeated accesses to the same block cost little.  

Several trade-offs are involved: You should have a generous number 
of core buffers to minimize overlays. You should choose you block 
size with this use in mind. Accessing such disk-resident fields is 
slower than if you deliberately read the block into a fixed location and 
access it there; but the ease with which you can address data 
scattered on disk, and the beauty of being able to forget that some 
data is on disk and other data in core, to me make up for the loss in 
speed. Besides, it's your problem to implement the feature in a way 
that is efficient.  

Suppose you want to scan a portion of disk. All you have to do is 
define the fields and establish a loop: start with the first block 
address, store it in the base location where the fields expect it and 
increment it each time through the loop. All right, your advantage is 
marginal. All you save is a read instruction. But if that block links to 
another one, all you need do is store the link in the base location for 
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other fields, and forget that a link is involved. If you access fields in 
the link it will automatically be read. If not, it won't be. The more 
complex your data, the greater the advantage.  

Of course, you don't have to worry about writing blocks either. 
Chapter 6 talked about flagging blocks that need writing, rather than 
writing them immediately. Pays off here! If you change a field, its 
block will be re-written; if you don't, it won't. Just make sure that 
when you say GOOD-BY your program writes all changed blocks.  

You can make these field entries identical with those accessing core, 
by making the pointer to the base address 0. If you don't point to a 
disk address, you must mean core.  

Notice that this addition of a base to a field entry defines a data 
structure very much like the levels in COBOL's data division: 01 level 
corresponding to the disk address; 02 levels to the fields themselves. 
For a few extra instructions you can add higher levels: If the pointer 
does not reference a disk address, but another field description, you 
have the equivalent of 03 level, etc.  

Consider how the field reference actually works. In the field entry you 
have a word parameter that tells which word the field is in (or starts 
in). If this field references another, you add the word parameters 
together. When you find the core address of the disk block, you add 
the word offset and voila': you have the word you want. Going 
through intermediate fields has little advangage unless the 
intermediate fields change. Why not? By incrementing a base field 
address, you can access different rows of a matrix or different 
records in a block. Or you can access different sub-records of a 
record. Very useful! It's enough to make me think COBOL is a pretty 
good language. Of course you can do the same thing with core fields, 
you just never point to a disk address at the very end.  

A word of warning! Don't try to gain efficiency by putting the core 
address of a block in an index register. It's too hard to keep track of 
which block, if any, the index is currently identifying. You simply have 
to go through a fair bit of code to provide useful generality. Of course, 
you hardware might have some special features: maybe 
microprogramming? Even indirect addressing might be helpful.  

Given such elaborate addressing capabilities, you can use some help 
debugging your screens. Memory protection is easy to provide, and 
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very helpful. Include with each field entry a maximum size (in words) 
for that field. When you calculate an address that purports to be in 
that field, make sure it is. The upper limit for the final block reference 
is of course the block size. The upper limit for a core reference is also 
known. A simple error message stating OVERFLOW will catch trouble 
before it has a chance to propagate.  

You might want to implement an additional kind of field entry. This 
one has a link. If you make a reference that lies outside the field, it will 
follow this link and attempt to satisfy your request. In particular, a 
record entry that points to a block: If you increment the record offset 
beyond the end of the block, you can pick up a link from the block, 
change the block address, reset the record offset and access the new, 
overflow block. Automatically! This makes for a very attractive 
implementation of variable length records (actually blocks), providing 
the records are composed of fixed-length pieces.  

If you want such an overflow capability, you must provide a way of 
constructing the links. You need an entry that will search a block 
(chain) for a record-size hole - of course all holes are the same size. If 
you can't find a hold, you must GET a new block, link it, and then you 
have a block full of holes. A hole should be identified by a 0 in the first 
word, character or bit, so that when GET clears the new block to 0, all 
record positions are empty. Naturally you have no guarantee that 
overflow blocks will be near each other. Almost certainly they won't 
be. Either you don't care, or you initially allocate each block chain 
sequentially, up to mean size.  

It is easy to remove a record. You create a hole by storing 0 in the first 
word. It is hard to discover whether by doing this you have caused an 
empty block which can be un-chained. Unless you expect your data to 
shrink and need to recover space, don't bother. How can data shrink? 
Also, don't move records around - to squeeze out holes perhaps. Just 
as we want to use absolute block addresses, we want to use absolute 
record addresses (if we use record addresses at all).  

So, we can have automatic access to fields scattered all over disk and 
in variable size records at that. Basic Principle!  

One thing! If field entries can address other field entries, you need 
some way to distinguish a field from a disk address. I have no 
suggestion.  
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9. Programs that bootstrap 

It's sometimes hard to appreciate how it all gets started. We have 
been tacitly assuming that your computer has a compiler and that you 
used it to compile your program. But how did your compiler get 
written? Today the answer is certainly that it was prepared by another 
compiler on another computer. We've achieved parity with the 
biological maxim: all life comes from previously existing life. For 
practical purposes, all programs are prepared by previously existing 
programs.  

Although this makes life somewhat easier for compiler writers, 
especially when the target computer isn't built yet, it has a drawback. 
You can never drop your ultimate dependence on the pre-existing 
program. If you use a compiler that generates certain instructions, or 
assumes a certain disk format, you are constrained to be compatible. 
Consider that a simple version of our program, providing it includes 
compiler verbs, is perfectly capable of compiling itself. It can do this 
with greater freedom than the standard compiler, but more important, 
you can then discard the standard compiler.  

In Chapter 1, I discussed the sad state of software quality. Although 
we can prepare an excellent object program, we are obliged to 
maintain it as a source program for an unhappy compromise of a 
compiler. I must admit that this is the most expedient way to get the 
program started. However, I question whether it is most efficient over 
the long haul of re-compiling and modifying.  

Let us imagine a situation in which you have access to your computer. 
I mean sole user sitting at the board with all the lights, for some hours 
at a time. This is admittedly an a-typical situation, but one that can 
always be arranged if you are competent, press hard, and will work 
odd hours. Can you and the computer write a program? Can you write 
a program that didn't descend from a pre-existing program? You can 
learn a bit and have a lot of fun trying.  
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9.1 Getting started 

First you'll have to know some things: how to turn the computer on 
and off (odd hours), how to enter and display data from the console 
switches, and how to avoid damaging data stored on disk. You may 
have to corner operators or engineers to discover such information; it 
is so rarely of interest it doesn't get written down.  

So now you're face to face with the computer. What do you do? First 
an exercise. Initialize the interrupt locations in such a way that the 
computer will run, will execute an endless loop, when you start it. 
OK? Then modify your loop so that it will clear memory. OK? You've 
probably learned a lot.  

Now we're going to start for real. We're going to start building your 
dictionary, even though you can't use it yet. You must choose your 
entry format now; variable-sized entries are required, but you can 
decide about word-size and layout. The first entry is SAVE; it will save 
your program on disk. Lacking a control loop you'll have to jump to it 
manually, but at least you can minimize re-doing a lot of work. The 
second entry is LOAD; it will re-load your program from disk. You 
may have a hardware load button, if you can store your program 
compatibly with it, fine. You might want to punch a load card, to 
provide initial load otherwise. But it's always convenient to be able to 
re-start from core.  

The third entry is DUMP; it will dump core onto the printer. It needn't 
be very fast to be a lot faster than looking with the switches. This 
probably isn't a trivial routine, but it oughtn't take more than a dozen 
instructions. You might want to postpone it just a bit.  

So, with a couple hours work - providing you read the manual first - 
you have an operating system (SAVE, LOAD) and debugging package 
(DUMP). And you know a lot about your computer.  
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9.2 The roots 

Lest you worry, I have gone through this process myself. I've done it 
twice, actually, and I'm not describing it as I did it, but as I now think I 
should have done it. So you've room for improvisation.  

In a sense we're building a tree. We've now reached a point where we 
can start making the roots. For a while everything will be concealed 
but we'll eventually reach daylight and start on branches.  

I presume you can LOAD your program and DUMP core. It's time to 
get away from the switches and use the typewriter. So set up a 
message buffer from which you can send and receive text. 
Presumably when awaiting text your program sits in an endless loop 
somewhere. Learn to recognise that loop. You'll spend most of your 
running time there and it's reassuring to know that everything's 
allright.  

No dictionary entry is associated with message I/O. You could define 
one, but we won't need it. In general we will construct entries only 
when they'll be needed. We can always add any entry we need, later.  

Your're doing great. Now establish the stacks, the dictionary search 
subroutine and entries for WORD and NUMBER. Be very careful to do 
it right the first time; that is, don't simplify NUMBER and plan to re-do 
it later. The total amount of work is greater, even using the switches.  

Now write a control loop. You might test the stack, but jump to an 
unspecified error routine. And run. DUMP is still our only output 
routine, but you should be able to read and execute words like DUMP, 
SAVE and LOAD.  

Write an entry for ENTRY, the subroutine that constructs dictionary 
entries. I haven't specified the code executed for WORD, NUMBER 
and ENTRY. These are subroutines, and the only time we'll use their 
names is when compiling code. So they should execute code that 
generates a call instruction. We haven't written that code yet.  

Now define the code-entry, the word that names code; and the deposit 
word, the word that places the stack in core. Now you can type octal 
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numbers and store them in the dictionary. No more switches. You can 
also construct new dictionary entries, for code.  
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9.3 The branches 

We've reached a milestone. The invisible work is done and we can 
have a written record of what remains. There are many things to do 
and the order not so obvious. We've reached the position of having a 
source language, and we need to be able to modify it and re-compile 
without re-doing everything. Here we're forced to generate temporary 
code that will become obsolete, but it will save a lot of effort.  

First a READ and WRITE entry to provide disk-access to a single core 
buffer. Then a simple T and R to type and replace lines of text in that 
block. These entries will later become obsolete, so keep them simple.  

We now need the READ and ;S verbs for screens. Specify a block 
number and we can read the text in that block.  

Now we write screens that provide definitions, an improved compiler, 
improved block handler, improved text-editor and we can proceed 
with our application. We want a REMEMBER entry. We haven't needed 
it so far bacause we could always reach in and reset the dictionary 
manually.  

I'm sure you've noticed the difficulty with modifying code in the root. 
A powerful tool is to be able to shift the dictionary in core. If the root 
doesn't use absolute addresses, define a SHIFT entry and use it. 
Otherwise minimize the number of absolute addresses and define a 
more elaborate SHIFT verb that adjusts them.  

Be careful SAVEing your program. Keep a back-up of your old version 
before SAVEing a new one, just in case. 
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Figure 1, Figure 2, Figure 3 
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Figure 6.2 

### 
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