

PROGRAMMING A
PROBLEM-ORIENTED-

LANGUAGE
Charles H. Moore

written ~ June 1970

– 6 –

Contents

1. Introduction 6
1. .. Basic Principle .. 8 8
2. Preview .. 11

2. Programs without input .. 13

1. Choosing a language .. 15
2. Choosing a computer 18
3. Arrangement and formatting 19
4. Mnemonics ... 20
5. Routines and subroutines 22

3. Programs with input .. 24

1. Nouns and verbs ... 25
2. Control loop ... 30
3. Word subroutine ... 32

1. Message I/O ... 34
2. Moving characters 36

4. Decimal conversion.. 37
1. Numbers .. 38
2. Input conversion 41
3. Output conversion 43

5. Stacks .. 45
1. Return stack .. 46
2. Parameter stack 47

6. Dictionary .. 48
1. Entry format .. 49
2. Search strategy 51
3. Initialization .. 52

7. Control language - an example 53

4. Programs that grow ... 55
1. Adding dictionary entries 57
2. Deleting entries .. 59
3. Operations .. 61
4. Definition entries .. 64

1. Definition .. 67
2. Execution ... 70
3. Conditions ... 72
4. Loops .. 76
5. Implementation 78

5. Code entries .. 81

– 7 –

5. Programs with memory... 85
1. Organization of disk ... 86

1. Getting blocks 87
2. Releasing blocks 89
3. Reading and writing 90

2. Text on disk ... 91
1. Text editing .. 92

6. Programs with output ... 95

1. Output routines .. 96
2. Acknowledgement .. 97
3. Character strings ... 99
4. Field entries .. 101

7. Programs that share.. 102

1. Non-user activities 104

2. Message handling 105

1. User control .. 106

2. Queing .. 107
1. Usage .. 109

3. Private dictionaries .. 110
2. Memory protection 111

3. Controlled access 112
4. Disk buffers ... 113
5. User swapping .. 114

8. Programs that think ... 116
1. Word dissection ... 117
2. Level definitions .. 120
3. Infinite dictionary ... 126
4. Infinite memory ... 130

9. Programs that bootstrap... 134

1. Getting started .. 135
2. The roots ... 136
3. The branches .. 138

Figure 1, 2, 3 .. 139
Figure 6.2 ... 140

– 8 –

1. Introduction

I'm not sure why you're reading this book. It's taken me a while to
discover why I'm writing it. Let's examine the title: Programming a
Problem-Oriented-Language. The key word is programming. I've
written many programs over the years. I've tried to write good
programs, and I've observed the manner in which I write them rather
critically. My goal has been to decrease the effort required and
increase the quality produced.

In the course of these observations, I've found myself making the
same mistakes repeatedly. Mistakes that are obvious in retrospect,
but difficult to recognise in context. I thought that if I wrote a
prescription for programming, I could at least remind myself of
problems. And if the result is of value to me, it should be of value to
others; if what I say is new to you, you may learn something of value;
if I cover familiar ground, you at least get a new point of view.

I've also been distressed at the lack of concern from others about
problems I consider significant. It amounts to a general indifference
to quality; a casual attitude of confidence that one's programs are
pretty good, in any case as good as necessary. I'm convinced this
confidence is misplaced. Moreover this attitude is reinforced by the
massive trend to high-level languages and a placid acceptance of
their inefficiencies: What's the use of designing a really good
algorithm if the compiler's going to botch it up anyway?

So I've written a book about programming. I have no great taste for
debating over a one-way communication link and no real interest in
convincing you that I'm right in what I say. So you'll probably find that
I'm being brusk. I'm quite likely to state bluntly something you may
take issue with. Please do! My intention is to document an approach
I've found useful, and perhaps to stimulate critical interest in
programming. If you care enough to take issue, I'm delighted.

Back to the title. What about Problem-Oriented-Language? I didn't
start out to write about that; and I'm not sure that I'm qualified to do
so. But I discovered that in order to justify what I was doing and
identify the appropriate circumstances for doing it, the term became
essential.

– 9 –

A problem-oriented-language is a language tailored to a particular
application. To avoid that uniquely clumsy term, I'll usually substitute
application language as synonymous. Very often such a language
isn't recognised for what it is. For instance, if your program reads a
code in column 80 to identify an input card, you are implementing an
application language. A very crude one, a very awkward one; mostly
because you hadn't given the matter any thought. Recognising the
problem, I'm sure you can design a better solution. This book will
show you how.

– 10 –

1.1 The Basic Principle

We have a large number of subjects to talk about. I'm going to throw
before you a lot of techniques that you may be able to use. This is
basically the result of the nature of a digital computer: a general
purpose tool for processing information.

A computer can do anything. I hope that your realize that, providing
you allow me to define "anything", I can prove this. I mean real,
incontrovertible, mathematical-type proof. A computer cannot do
everything. I can prove this, too. But most important, with only you
and I to program it, a computer can not even do very much. This is of
the nature of an empirical discovery.

So to offer guidance when the trade-offs become obscure, I am going
to define the Basic Principle:

 Keep it Simple

As the number of capabilities you add to a program increases, the
complexity of the program increases exponentially. The problem of
maintaining compatibility among these capabililties, to say nothing of
some sort of internal consistency in the program, can easily get out of
hand. You can avoid this if you apply the Basic Principle. You may be
acquainted with an operating system that ignored the Basic Principle.

It is very hard to apply. All the pressures, internal and external,
conspire to add features to your program. After all, it only takes a
half-dozen instructions; so why not? The only opposing pressure is
the Basic Principle, and if you ignore it, there is no opposing pressure.

In order to help you apply the Basic Principle, I'm going to tell you
how many instructions you should use in some routines. And how
large a program with certain capabilities should be. These numbers
are largely machine independent; basically they measure the
complexity of the task. They are based upon routines I have used in
my programs, so I can substantiate them. Let me warn you now that
I'll be talking about programs that will fit comfortably in 4K words of
core.

The Basic Principle has a corollary:

– 11 –

 Do Not Speculate!

Do not put code in your program that might be used. Do not leave
hooks on which you can hang extensions. The things you might want
to do are infinite; that means that each one has 0 probability of
realization. If you need an extension later, you can code it later - and
probably do a better job than if you did it now. And if someone else
adds the extension, will they notice the hooks you left? Will you
document that aspect of your program?

The Basic Principle has another corollary:

 Do It Yourself!

Now we get down the the nitty-gritty. This is our first clash with the
establishment. The conventionsl approach, enforced to a greater or
lesser extent, is that you shall use a standard subroutine. I say that
you should write your own subroutines.

Before you can write your own subroutine, you have to know how.
This means, to be practical, that you have written it before; which
makes it difficult to get started. But give it a try. After writing the same
subroutine a dozen times on as many computers and languages,
you'll be pretty good at it. If you don't plan to be programming that
long, you won't be interested in this book.

What sort of subroutines do you write for yourself? I have acquired
respect for SQRT subroutines. They're tricky things; seem to attract a
lot of talent. You can use the library routine to good advantage. Input
subroutines now. They seem to have crawled out from under a rock. I
somehow can't agree that the last word was said 15 years ago when
FORMAT statements were invented.

As I will detail later, the input routine is the most important code in
your program. After all, no one sees your program; but everyone sees
your input. To abdicate to a system subroutine that hasn't the
slightest interest in your particular problem is foolish. The same can
be said for output subroutine and disk-access subroutine.

Moreovere, the task is not that great as to deter you. Although it takes
hundreds of instructions to write a general purpose subroutine, you

– 12 –

can do what you need with tens of instructions. In fact, I would advise
against writing a subroutine longer that a hundred instructions.

So if you want to read double-precision, complex integers; don't rely
on the COBOL input subroutine, or wait till the manufacturer revises it.
It's a lot easier to write your own.

But suppose everyone wrote their own subroutines? Isn't that a step
backward; away from the millenium when our programs are machine
independent, when we all write in the same language, maybe even on
the same computer? Let me take a stand: I can't solve the problems of
the world. With luck, I can write a good program.

– 13 –

1.2 Preview

I'm going to tell you how to write a program. It is a specific program;
that is, a program with a specific structure and capabilities. In
particular, it is a program that can be expanded from simple to
complex along a well defined path, to handle a wide range of
problems, likewise varying from simple to complex. One of the
problems it considers is exactly the problem of complexity. How can
you control your program so that it doesn't grow more complicated
than your application warrants?

First I'll define "input", and mention some general rules of
programming that apply to all programs, whether they have input or
not. Actually we will be almost exclusively concerned with input, so
I've not much to say about programs lacking input.

By admitting input, a program acquires a control language by which a
user can guide the program through a maze of possibilities. Naturally,
this increases the flexibility of the program, it also requires a more
complex application to justify it. However it is possible to achieve a
considerable simplification of the program, by recognising that it
needs a control language as a tool of implementation.

The next step is a problem-oriented-language. By permitting the
program to dynamically modify its control language, we mark a
qualitative change in capability. We also change our attention from
the program to the language it implements. This is an important, and
dangerous, diversion. For it's easy to lose sight of the problem amidst
the beauty of the solution.

In a sense, our program has evolved into a meta-language, which
describes a language we apply to the application. But having
mentioned meta-language, I want to explain why I won't use the term
again. You see things get pretty complicated, particularly on a
philosophic level. To precisely describe our situation requires not 2
levels of language - language and meta-language - but a least 4 levels.
To distinguish between these levels requires subtle arguments that
promote not clarity but confusion. Moreover, the various levels can
often be interchanged in practice, which reduces the philosophic
arguments to hair-splitting.

– 14 –

A problem-oriented-language can express any problem I've
encountered. And remember, we're not concerned with the language,
but with the program that makes the language work. By modifying the
language we can apply the same program to many applications.
However there are a class of extensions to the language that
constitute another qualitative change. They don't increase the
capacity of the program, but they increase the capability of the
language. That is, they make the language more expressive. We will
consider some such extensions in Chapter 8. I gathered them
together chiefly because they share the common property that I don't
quite comprehend their potential. For example, I think the language
applies the concepts of English.

Finally, I want to describe a process whereby you can implement this
program in machine language. That is, a bootstrap technique whereby
a basic program can modify and expand itself.

I hope you find the ideas I describe of value to you. In particular, I
hope that you will agree that the program I describe has a certain
inevitability; that it must do certain things, it must do them in a certain
order, and that a certain set of conventions yield an optimal solution.

I've gone to some lengths to simplify. I hope that you don't find too
many violations of the Basic Principle, for it's much easier to
elaborate upon a program than it is to strip it to basics. You should
feel free to build upon my basic routines, provided that you recognise
that you are adding a convenience. If you confuse what is expedient
with what is necessary, I guarantee your program will never stop
growing.

You will notice a lack of flow-charts. I've never liked them, for they
seem to include a useless amount of information - either too little or
too much. Besides they imply a greater rigidity in program structure
than usually exists. I will be quite specific about what I think you
should do and how you should do it. But I will use words, and not
diagrams. I doubt that you would give a diagram the attention it
deserved, anyway. Or that I would in preparing it.

– 15 –

2. Programs without input

The simplest possible program is one that has no input. That is a
somewhat foolish statement, but if you'll give me a chance to explain
we can establish some useful definitions.

First consider the word "input". I want to use it in a specific sense:

 Input is information that controls a program.

In particular, I do not consider as input:

 Moving data between media within the computer. For instance,
o copying tape onto disk, or disk into core.

 Reading data into the computer. This is really a transfer
between media:

o from card to core.

However, data very often has input mixed with it - information that
identifies or disposes of the data. For example, a code in col. 80 might
identify a card. It is input, the rest of the card probably data.

Many programs have input of a kind I shall disregard: operating
systems use control cards to specify which files to assign, which
subroutines to collect, etc. Such information is definitely input to the
operating system. Although it may affect the operation of your
program, ignore it because it is not under your control - unless your
program is the operating system itself.

In order to sharpen your recognition of input, let me describe a
program that has input. Consider a program that fits a smooth curve
through measured data points. It needs a lot of information in order to
run: the number of data points, the spacing between points, the
number of iterations to perform, perhaps even which function to fit.
This information might be built into the program; if it is not, it must be
supplied as input. The measured data itself, the object of the entire
program, is not input; but must be accompanied by input in order to
to intelligible.

A program that has no input may be extremely complex. Lacking
input simply means the program knows what to do without being told.

– 16 –

That built into the code is all the information needed to run. If you are
willing to re-compile the program, you can even modify it without
input.

But I'll be viewing programs from the input side. I'll be ranking
programs according to the complexity of their input and I plan to
demonstrate that a modest increase in the complexity of input can
provide a substantial decrease in the complexity of the program.
From this point of view, a program with no input is simple.

Since I'm going to be talking about input, a program without input
leaves me nothing to talk about. But I want to make some points
about programs in general, so I'll make them here. For one thing, we
will be climbing a tree. When we reach the higher branches we'll have
enough trouble keeping our balance without worrying about the roots.

– 17 –

2.1 Choosing a language

We shall be less interested in computer language than most
programmers. For 3 reasons: First, we will eventually define our own
application-oriented language. How we implement that language is of
lesser concern. Second, you probably aren't in a position to pick a
language. Your installation probably has reduced your choice to nil.
Third, we won't be talking about problems at the language level.

This last comment deserves elaboration. I assume that you are
already a competent programmer. I'm not interested in teaching you
how a computer works, or how a language conceals the computer. I
want to talk about problems common to all programs in a machine-
independent and language-independent manner. I will leave to you the
details of implementation. I am not going to write a program, I am
going to show you how to write a program.

I hope that you are a good enough programmer to think in
computerese. That is, as someone discusses their application, you
interpret it in terms of computer operations: a loop here, a calculation
there, a decision . . . The details are largely irrelevant, the gross
structure of the program is of concern.

As you put more thought into the problem, you begin to relate it to
your particular machine: this data comes off tape, that loop is stopped
by . . ., this is really a 3-way branch. you modify the problem as
required by your particular hardware configuration.

Finally, you must translate your program into a particular language.
You encounter a new class of problem: your FORTRAN won't run that
loop backwards, COBOL doesn't have a 3-way branch, you couldn't
access the data that way. . . Current languages put more constraints
on this last coding process than they should.

I'll have a bit more to say about languages, but mostly we'll stay at the
most abstract level - talking computerese. We won't be talking in
meta-language exclusively. I may tell you to load an index-register or
to jump on negative and you'll have to translate that into the
equivalent for your computer and language.

Now let's look at the major failing of higher-level languages. In
attempting to achieve machine-independence and to be applicable to

– 18 –

a wide range of applications, they only give you acess to a fraction of
the capabilities of your computer. If you compare the number of loop
control instructions on your computer to the number of loop
constructs in your language, you'll see what I mean.

Let me indulge in a 1-sentence characterization of 3 popular
languages to illustrate their restricted capabilities:

 FORTRAN is great at evaluating complicated algebraic
expressions.

 COBOL is great at processing packed decimal data.

 ALGOL is great at providing loops and conditional statements.

Each language can be very efficient at its sort of job. But if you want
conditional loops involving complicated decimal expressions you
have a problem.

We are going to be concerned with efficiency. We are going to do
some things that if we don't do efficiently, we can't do at all. Most of
these things will not fit in the framework of a higher-level language.
Some will; others will demand controlled use of the hardware that a
compiler doesn't permit. For example, upon entering a FORTRAN
subroutine it may save the registers it uses. If you didn't need to save
them you've wasted time and space. An ALGOL subroutine may
expect registers available that you have reserved; then you have to
save them. It may well cost you more effort to interface with the
compiler than it saves you in return.

Moreover, none of these languages are very good at moving things
around. Most statements are data transfers - count them in your latest
program. There is a profound philosophical truth concealed in how
much we can accomplish by moving numbers around. If we can move
several things with one instruction, or put the same register several
places - we can't afford not to.

You will have to code in assembler! Not the whole program, if you
insist, but the important parts that we'll be concentrating on. You
might be able to do some of these in FORTRAN, but it simply isn't
worth the effort. I'll show you where higher-level subroutines can go,
and I think you'll agree there is good reason to restrict them to that
function.

– 19 –

I recognise the drawbacks of assembler and chafe at them as much
as anyone. I don't like to punch and debug 10 times as many cards
either. But I will in order to get the performance I need. By the way, I
will use the word "compiler" to include assembler; we will compile an
assembly language program.

Later I'll show you how to write a program in a forgotten language:
machine language. By that I mean sitting at the console and entering
absolute, binary instructions with the switches. Depending on the
hardware and software available, and the nature of your application, it
may just be the best language of all.

– 20 –

2.2 Choosing a computer

Of course I don't expect that you're in a position to choose a
computer. Nor am I going to discuss hardware at all. But I do have a
mental image of the kind of computer, and explaining it may help you
understand some of my comments.

Most applications can be programmed very nicely on a small
computer: say 4K of 16-bit words with a typical instruction set,
floating-point hardware if needed. If, that is, the computer is
augmented with random access secondary memory, which I will call
disk. The capacity of disk is unimportant, even a small disk providing
plenty for our purposes, and is determined by the application.
However, it is important to be able to copy the disk onto another disk,
or tape, for back-up. Thus I envisage a small computer with 2
secondary memories, and of course a keyboard or card-reader and
printer or scope for input and output.

Instead of running applications in serial on a small computer, you can
run them in parallel on a large one. I see no advantage, for the amount
of core and disk you can afford to use for a single application is about
that available on a small computer. You don't gain speed, you suffer
from a complex operating system, and you have a enormous capital
investment. But the configuration I have in mind remains the same:
4K of core, secondary memory and input/output device.

– 21 –

2.3 Arrangement and formatting

Now I'm going to tell you how to write a program. Independent of
language or computer. Things you ought to be doing already, but
probably aren't because noone ever told you to. Little things. But if
you don't do them you won't have a good program; and we're going to
write a good program.

Remember the Basic Principle! If you didn't read the Introduction, do
it now.

Declare all variables. Even in FORTRAN when you don't have to.
Everyone likes to know what parameters you are using, presumably
need to use; likes to count them, to see if they could use fewer; is
annoyed if you slip one in without mentioning it.

Define everything you can before you reference it. Even in FORTRAN
when you don't have to. Why not? You don't like to read a program
backwards either. 'Everything you can' means everything except
forward jumps. You better not have many forward jumps.

Make variables as GLOBAL as possible. Why not? You can save some
space and clarify your requirements. For instance, how many Is, Js
and Ks do you need? In most cases a single copy in COMMON would
suffice (you have to declare them, remember, and may as well put
them in COMMON); you can redefine it locally if you must; and it is of
interest that you must.

Indent! High-level languages, even modern assemblers, fail to insist
that you start in column x. But you do! The unbelievable appeal of a
straight left margin! Paper is 2-dimensional. Use it! If you indent all
statements inside a loop, it's obvious at a glance the extent of the
loop. If you indent conditionally executed statements you'll find that
nested conditions sort themselves out - automatically. If you indent
little statements you wish you didn't have to include (I = I) you'll find
they intrude less as you glance through the listing. Always indent the
same amount, 3 spaces/level is good. Be consistant and be accurate.
Sloppy indenting is obvious.

– 22 –

2.4 Mnemonics

You will find as you read, that I have strong opinions on some
subjects and no opinion of others. Actually I have strong opinions on
all, but sometimes I can't make up my mind which to express.
Fortunately it leaves you some decisions to make for yourself.

Use words with mnemonic value. Unfortunately what is mnemonic to
you may not be mnemonic to me; and I'm the one who judges. Also
unfortunately, mnemonic words tend to be long, which conflicts with:

Use short words. You don't want to type long words, and I don't want
to read them. In COBOL this means avoid dashes and avoid
qualification, though both can be useful upon occassion.

So let me suggest a compromise: abbreviate in some consistant
fashion and stick to your own rules. I can probably figure out the rules
you're using. You might even mention them in a comment.

Use words with the correct grammatical connotations: nouns for
variables, verbs for subroutines, adjectives for . . . Do not use clever
words (GO TO HELL). Their cuteness wears off very fast and their
mnemonic value is too subjective. Besides they offer an unwanted
insight into your personality.

Use comments sparingly! (I bet that's welcome.) Remember that
program you looked through - the one with all the comments? How
helpful were all those comments? How soon did you quit reading
them? Programs are self-documenting, even assembler programs,
with a modicum of help from mnemonics. It does no good to say:

 LA B . Load A with B

In fact it does positive bad: if I see comments like that I'll quit reading
them - and miss the helpful ones.

What comments should say is what the program is doing. I have to
figure out how it's doing it from the instructions anyway. A comment
like this is welcome:

 COMMENT SEARCH FOR DAMAGED SHIPMENTS

– 23 –

Mnemonics apply to variables and labels (You can even get
mnemonic value in FORTRAN statement numbers). Where possible
you should apply them to registers also. You may do well to assign
several names to the same entity, to indicate its current use. However,
don't waste effort naming things that don't need names. If you need a
counter, use I, J, K; to assign a big name (EXC-CNTR) to an
insignificant variable is no help.

– 24 –

2.5 Routines and subroutines

There are two words I need to establish precise definitions for: A
subroutine is a set of instructions that return from whence they came.
A routine is a set of instructions that return to some standard place.

To put it another way, you jump to a routine, you call a subroutine.
The difference is retained in higher-level languages: GO TO versus
CALL or ENTER.

So what? Subroutines suffer from nesting. If you call a subroutine
from within a subroutine you must somehow save the original return
address. I'm sure you can rattle-off a dozen hardware/software ways
of doing this. They're all expensive.

If you jump somewhere, not intending to come back, you can save
trouble, time and space. But only if you really never come back. To
simulate a subroutine call is worse than ever.

Higher-level languages conceal this by nesting automatically. The
best solution is to nest if you must, but only when you must, and
never to save the same address more than once. That is, upon
entering a subroutine, save the return address if you intend to call
other subroutines. When you're finally ready to return, then un-nest.

Obvious? Perhaps. But it's usually done wrong! Sometimes the
problem only arises with recursive subroutine calls; depending on
hardware. It always arises with re-entrant programming.

So we can get in and out of routines and subroutines. How do we
pass parameters? Again, there are as many answers as computers,
languages and programmers. We shall standardize: you pass what
you can in registers; the rest via a push-down stack.

It is extremely important for routines to be able to communicate
efficiently. I hope you are aware of the cost of a FORTRAN subroutine
call. I consider it a basic flaw in the language. We will be moving
among so many subroutines that failing to minimize overhead could
easily halve our running speed.

– 25 –

You must also consider the value of a subroutine. It isolates a logical
function and it eliminates repeated instructions. The first is
acceptable only at minimal cost. The second only if space is saved: a
1-instruction subroutine is ridiculous; a 2-instruction must be called
from 3 places to break even. Be careful!

Finally, it is important to use registers efficiently. Assign registers for
specific purposes and use them consistently. Re-assign registers if
you must to avoid conflicts. Do not move data from one register to
another; see that it is where it belongs in the first place.

When I say register, I'm obviously thinking assembler. However, you
will have to simulate the function of registers with subscripts, etc. in
other languages, and the same considerations apply.

– 26 –

3. Programs with input

A program without input is a program with a single task. A program
with input may have many tasks, which it will perform as directed by
its input. Thus I consider input to be control information, and the
control information to define a control language.

We shall have a problem in this chapter, for we are discussing a loop.
Each element of the loop depends on its predecessor and successor,
and we have nowhere to start. I have done the best I could, but am
obliged to refer to things before I define them. Especially in the next
section where I try to justify some of the details we'll encounter
immediately after.

This chapter is full of details, more than I anticipated when I started it.
Although I'm surprised there's so much to say, I think it's all of value. I
only caution you not to get lost in the details; the structure, the
concept of the program are what is important.

To set the stage, let me briefly outline how our program must operate.
You are sitting at a keyboard typing input. You type a string of
characters that the computer breaks into words. It finds each word in
a dictionary, and executes the code indicated by the dictionary entry,
perhaps using parameters also supplied by the entry. The process of
reading words, identifying them and executing code for them is
certainly not unusual. I am simply trying to systematize the process,
to extract the inevitable functions and see that they are efficiently
performed.

– 27 –

3.1 Nouns and verbs

I've mentioned the dictionary and we'll soon examine the details
required to implement it. But first I'd like to talk a bit about individual
entries to try and give you a feel for what we're doing.

We're going to read words from your input, find them in the dictionary,
and execute their code. A particular kind of word is a literal, a word
that identifies itself:

 1 17 -3 .5

We won't find such words in the dictionary, but we can identify them
by their appearance. Such words act as if they were in the dictionary,
and the code executed for them places them on a push-down stack.

Other words act upon arguments found on this stack, for example:

 + add the last 2 numbers placed on the stack, leave the sum
there.

 , type the number on top of the stack, and remove it from the
stack.

If we type a phrase such as:

 1 17 + ,

We are saying: put 1 onto the stack, 17 onto the stack, add them, and
type their sum. Each word performs its specific, limited function;
independently of any other word. Yet the combination of words
achieves something useful. In fact if we type:

 4837 758 + -338 + 23 + 4457 + -8354 + ,

we can even do something non-trivial: each number is added to the
sum of its predecessors, and the result typed.

This is basically the value of our program. It lets us combine simple
operations in a flexible way to accomplish a task.

– 28 –

Let's look more closely at the words we used above. They fall into 2
distinct classes; English even provides names for them:

 Nouns place arguments onto the stack.

 Verbs operate upon arguments on the stack.

All words cause code to be executed. However in the case of nouns,
the code does very little: simply place a number on the stack. Verbs
are considerably more varied in their effects. They may do as little as
add 2 arguments, or as much as type out a result - which requires a
great deal of code.

In effect, nouns place arguments onto the stack in anticipation of
verbs that will act upon them. The word anticipation is a good one. In
order to keep our verbs simple, we promise that their arguments are
available. We could define a verb that reads the next word and uses it
as an argument; but in general we don't. It is not the business of a
verb to provide its own arguments; we use nouns to provide
arguments before we execute the verb. In fact, this substantially
simplifies our program.

We can extend the characterization of entries a little further. Verbs
have different numbers of arguments:

 Unary verbs modify the number on the stack.

 Binary verbs combine 2 arguments to leave a single result.

Arithmetic operations are binary, arithmetic functions are usually
unary. However, there are more verbs than we can usefully catagorize.
For example, the verb "," that types the stack is not unary, since it
removes the number from the stack. Although it does have a single
argument.

Another way of distinguishing verbs is:

 Destructive verb removes its arguments from the stack.

 Non-destructive verb leaves its arguments on the stack.

Unary and binary verbs, as well as the type verb ",", are destructive.
The verb DUP, which I define to duplicate the top of the stack, is non-
destructive. In general verbs are destructive. In fact, I deliberately
define verbs to be destructive in order to simplify the task of

– 29 –

remembering which are and which aren't. I recommend that you do
the same.

Literals are nouns. We can define other words as nouns; words that
use their parameter field to place numbers onto the stack:

 Constants place the contents of their parameter field onto the
stack.

 Variables place the address of their parameter field onto the
stack.

For example, if PI is a constant, it places 3.14 onto the stack. Thus:

 1. PI 2. * / ,

reads: place 1. onto the stack, place 3.14 onto the stack, place 2. onto
the stack, multiply (2. and PI), divide (1. by 2PI), and type. Constants
are particularly useful when you're using code numbers. It lets you
give names to numbers that might otherwise be hard to remember.

However the most important nouns by far are literals and variables. A
variable gives a name to a location and not to a value, as elementary
programming texts laboriously explain. However, what higher-level
languages conceal is that variables may be used in 2 distinct ways:

 To name a location from which a value is to be taken.

 To name a location into which a value is to be stored.

A constant automatically performs the first; and inherently prevents
the second (you can't store a value into a constant, for you don't
know where the constant came from). Rather than try to distinguish
function by context, as compilers do, we shall define 2 verbs that act
upon variables:

 @ replace the address on the stack with its contents.

 = Store into the address on the stack, the value just beneath it
on the stack.

Thus if I type, where X is a variable,

 X @ ,

– 30 –

I mean: place the address of X onto the stack, fetch its value, and type.
And if I type,

 X @ Y @ + ,

I mean: fetch the value of X, the value of Y, add, and type. On the
other hand,

 X @ Y =

will: fetch the address of X, then its value, fetch the address of Y, and
store the value of X into Y. But if I type

 X Y =

I'm saying: fetch the address of X, the address of Y, and store the
address of X into Y. Maybe this is that I mean to do, it's not
unreasonable.

I don't want to belabor the point, for we're getting ahead of ourselves.
But variables require special verbs, one of which (@) is not ordinarily
explicit. Incidently, I originally used the word VALUE for @. But the
verb is used so often it deserves a single character name, and I
thought @ (at) had some mnemonic value, besides being otherwise
useless.

I urge you to adopt the vereb @. Although you can conceal it in
various ways - we'll discuss one later - it adds needless complication.
Such a useful verb oughtn't be invisible. Besides it lets you store
addresses in variables - indirect addressing

 X Y = Y @ @ ,

reads: store the address of X in Y; place the address of Y on the stack,
fetch its value (the address of X) fetch its value (the contents of X),
and type.

I hope I've given you some idea of how you can put arguments onto
the stack and act on them with verbs. Although I define constants and
variables, unary and binary verbs, I hope it's clear that these are only
examples. You must define the nouns and verbs and perhaps other

– 31 –

kinds of words that are useful for your application. In fact, I think that
is what programming is all about. If you have available a program
such as I will now describe, once you decide what entries an
application requires, you'll find it absolutely trivial to code those
entries, and thus complete your problem.

– 32 –

3.2 Control loop

Our program has a structure that is easy to miss: it is a single loop.
However, it is a loop that is diffuse - scattered among all the code in
the program. Very few instructions are gathered together to form an
identifiable loop, so the loop warrants some explanation.

We are going to read a word from the input string, look up that word
in the dictionary, and jump to the routine it specifies. Each routine will
return to the top of the loop to read another word. We will be
discussing many routines and it will be helpful to have a term to
identify "return to the top of the loop to read another word". I will use
the word RETURN; you should provide a standard macro or label in
your program for the same purpose.

Actually, you accomplish 2 purposes: you mark the end of a routine.
And you identify the preceeding code as being a routine, as distinct
from a subroutine. Thus, I use the word RETURN with a totally
different meaning from the FORTRAN RETURN statement. I shall
speak of EXITing from a subroutine.

Included in your control loop should be a check that the parameter
stack has not exceeded its limits. This is best done after RETURNing
from a routine, and only needs to be done for routines that use the
stack. Thus there are 2 possible RETURN points (actually 3).

The control loop must be efficient. If you count the instructions it
contains, you measure the overhead associated with your program.
You will be executing some very small routines, and it's embarrassing
to find overhead dominating machine use. In particular you don't need
to check other than the parameter stack.

One more routine belongs in this section: an error routine. Whenever
an error is detected, a routine should jump to ERROR which will type
the offending word and an error message. It will then reset all stacks
and the input pointer and RETURN normally.

The problem of how to treat error messages is an important one. We
are in a position to do a good job: to avoid setting and testing flags;
to avoid cascading back through subroutine calls. By clearing the
return stack we eliminate any pending subroutine returns. By not
returning with an error flag, we avoid having the subroutine have to

– 33 –

worry about errors. This simplifies the code, but we must have a
standard method of handling problems.

The image of a person at a keyboard in invaluable for this purpose.
No matter what problem arises, we needn't worry about what to do.
Pass the buck; ask the user. For example, he types a word not in the
dictionary. What to do? Ask him: type the word and an error message,
in this case "?". He tries to add 2 numbers and there's only 1 on the
stack: type the word and "STACK!". He tries to access a field beyond
the limit of his memory: type the word and "LIMIT!".

Of course you want to be careful not to pose the user problems he
can't solve. Faced with a message "MEMORY PARITY" what can he do
about it? But he's certainly in a better position than your program to
take corrective action to most problems. And of course it's up to you
to decide what situations are problems.

By the way. Since you don't check the stack until after you executed a
routine, it will exceed stack limits before you know it. Thus stack
overflow and underflow should be non-fatal. A good solution is to let
the parameter stack overflow into the return stack, and underflow into
the message buffer. The return stack should never underflow.

– 34 –

3.3 Word subroutine

I've described the control loop that will run our program. The first
thing it does is to read a word; so the first thing we shall discuss is
how to read a word.

What is a word? Not a computer word, as I'm sure you realise,
although we shall have to use the word "word" in that sense. A word
is a string of characters bounded by spaces. It is extracted from a
larger string of characters by the routine we are discussing.

Let me contrast this definition with more conventional input routines.
FORTRAN formatted input, for example, doesn't speak of words but of
fields. The meaning of a number is determined by the field it resides
in; that is, by its position on a card. Since we are not using cards, the
notion of position becomes clumsy and we replace it with order: The
order of the words we read is significant, though their position is not.
We lose, however, the ability to leave a field empty, since we cannot
recognise an empty word. All our data must be explicit, which is
probably a good idea but a slow one to learn. Decide now that you will
not specify input conventions that have optional parameters.

Very well, let's write the WORD subroutine. It uses the input pointer to
point at the current position in the source text, the output pointer to
point at the current position in memory where we will move the word.
We must move it; partly to align it on a computer-word boundary and
partly because we may want to modify it.

Fetch input characters and discard them so long as they're spaces.
Thereafter deposit them until you find another space. Deposit this
space and as many others as needed to fill out the last computer-
word. If you have a character-oriented machine you may be amused at
my insistance on word-alignment. Mainly I'm anticipating the search
subroutine when we'll want to compare as large a piece of the word as
possible. If a word holds 6 characters (or even 2) it's much more
efficient to compare them in parallel than serially, even if you have the
hardware.

You may want to set an upper limit on word length. Such a limit
should include the largest number you will be using. Then the
question arises as to what to do with a longer word. You might simply
discard the excess characters, providing you don't plan to dissect the

– 35 –

word (Chapter 8). Better, perhaps, that you force a space into the
word at the limit. That is, break the word into 2 words. Presumably
something's wrong and you will eventually discover it in attempting to
process the fragments. However this limit should be large enough - 10
to 20 characters - so that it does not constitute a real restriction on
your input. It should also be 1 character less than a multiple of your
computer-word length, so that you can always include the terminal
space in the aligned word.

Words are bounded by spaces. You can probably find objections to
such a simple definition. For instance, arithmetic expressions often
do not have spaces between words. We shall discuss this in Chapter
9. Let me just say that we need to embed periods, dashes, and other
characters in words in order not to unreasonably restrict our potential
vocabulary. We'd like these to be words:

 1,000 1.E-6 I.B.M. B&O 4'3" $4.95

– 36 –

3.3.1 Message I/O

The WORD subroutine presumably examines input characters. Where
does it get these characters?

Although it's possible to read cards, I'm going to assume that you
have a keyboard to type input. Now there are 2 kinds of keyboards,
buffered and unbuffered. A buffered keyboard stores the message
until you type an end-of-message character. An unbuffered keyboard
sends each character as you type it. Your hardware, in turn, may
buffer input for you or not.

In any case we may want to examine each character more than once,
so we want buffered input. Even if you can process characters as they
arrive, don't. Store them into a message buffer.

Set aside a 1-line message buffer. Its size is the maximum size of a
message, either input or output, so if you plan to use a 132 position
printer make it large enough.

If you simulate buffering, you should implement a backspace
character and a cancel message character. For you will make a lot of
typing errors. If your hardware buffers, but does not provide these
capabilities, you should do so. This probably means a prescan of the
input; any other technique gets too complicated, and probably costs
more in the end.

Mark the end of an input message with an end-of-message word. This
is a word bounded by spaces like any other. It may or may not
coincide with the end-of-message character that you typed,
depending on your hardware and character set as to whether the
required spaces can be provided. This word permits ready detection
of the last word in a message. It will have a specific definition and
perform a valuable task.

In addition to a keyboard, you must have some sort of output device:
a printer or scope. Again it may be buffered or unbuffered. Unlike
input, we have no reason not to use unbuffered output. However if
you have several output devices, odds are one is buffered. If so, treat
them all as buffered, simulating the buffering where needed.

– 37 –

We will use the same message buffer for both input and output. My
motivation is to save space, or rather to increase the utilization of
space. My reasoning is that input and output are mutually exclusive.
There are exceptions, but we don't usually read input and prepare
output simultaneously. At least we never have to.

However, we do need a switch (1 bit) that states whether the message
buffer still contains input. The first time (or perhaps everytime) we
type output, we must reset this switch. We'll use it later.

We need a receive subroutine that will exit when we have a complete
input message. Likewise a transmit subroutine that will exit after
sending an output message. It should await an acknowledgement if
the hardware provides one. Don't try to overlap transmission of one
message with preparation of the next. Transmission is so slow and
preparation so fast that no noticable increase in speed is available.
And it complicates the program considerably.

– 38 –

3.3.2 Moving characters

I will speak of fetching and depositing characters several times,
mostly concerned with input and output. For example, the WORD
subroutine moves characters from the message buffer to a word
buffer. A simple task conceptually, but a difficult one to implement.
We would have exactly the same problem moving arrays from place to
place. But in fact we needn't move arrays and we must move
characters.

Let us define 2 entities: an input pointer and an output pointer. For the
moment you can think of them as index registers, although we will
have to generalize later. Let's also write 2 subroutines, although your
hardware may permit them to be instructions: FETCH will load the
character identified by the input pointer into a register, and advance
the input pointer; DEPOSIT will store that register at the position
identified by the output pointer, and advance the output pointer.

Depending on your computer, FETCH and DEPOSIT can be veery
simple, or extremely complex. If they require more than 1 instruction,
they should be subroutines, for we'll use them often. By combining
them, we can perform a move. However, it's important to be able to
examine the character before depositing it. A hardware move
instruction is of little value.

The input and output pointers use index registers. However, those
registers should only be used during a move. They should be loaded
prior to a move and saved after it, for they will be used for a number
of purposes, and it becomes impractical to store anything there
permanently.

– 39 –

3.4 Decimal conversion

After isolating and aligning a word from the input string, your control
loop searches the dictionary for it. If it isn't in the dictionary, it might
be a number. A number is a special kind of word that doesn't need a
dictionary entry; by examining the word itself we can decide what to
do with it. The code executed for a number will place the binary
representation of the number onto the stack.

We will discuss the stack in the next section. First let's define a
number more precisely.

– 40 –

3.4.1 Numbers

It is very hard to state exactly what is a number and what is not. You
will have to write a NUMBER subroutine to convert numbers to binary,
and this subroutine is the definition of a number. If it can convert a
word to binary, that word is a number; otherwise not.

It is foolish to examine a word to see if it is a number, and then to
convert the number to binary. Examination and conversion can be
combined into one process very easily.

There is one kind of word that invariably is a number: a string of digits
possible prefixed with a minus. Such numbers are usually converted
to binary integers. For example:

 1 4096 -3 7777 0 00100 10000000 6AF2 -B

are some decimal, octal and hex numbers. The number does not
specify its base, and a word that may be a hexadecimal number, may
not be a decimal number.

So already base has complicated numbers. And beyond simple
integers are endless other kinds of numbers: fixed-point fractions,
floating-point fractions double-precision integers, complex fractions,
etc. And such numbers can have many different formats as words:
decimal point, implied decimal point, exponents, suffixes. Indeed, the
same word may represent different numbers depending on its context.

One of your major tasks will be to decide what kinds of numbers you
need for your application, how you will format them, and how you will
convert them. Each kind of number must be uniquely identifiable by
the NUMBER subroutine, and for each you must provide an output
conversion routine.

I suggest the following guidelines: always define integers and
negative integers; do not permit a prefixed plus sign, it is useless on
a number and useful as a word; if you have floating-point hardware,
distinguish floating-point fractions by a decimal point; if you lack
floating-point hardware, use the decimal point to identify fixed-point
fractions; don't simulate floating-point; don't permit exponents on

– 41 –

fractions. These rules permit a simple NUMBER subroutine which I
will outline.

Your application may need special number formats:

 45'6 for 45 ft. 6 in., an integer

 1,000,000 an integer

 $45.69 an integer

It is not hard to include such numbers in NUMBER, but you cannot
include all possible formats. Some are incompatible:

 3'9 for 3 ft. 9 in.

 12'30 for 12 min. 30 sec. of arc

 12'30 for 12 min. 30 sec. of time

 4'6 for 4 shillings 6 pence

Basic Principle!

Fixed-point numbers are rarely used. I am convinced of their value
and would like to show you. With floating-point hardware, they offer
only the advantage of greater significance, which is probably not
worth much. However, without floating-point hardware they offer most
of the capabilities of floating-point numbers, without the very great
cost of floating-point software. The exception is a wide range of
exponents.

I am convinced that exponents are badly misused on computers. Most
applications use real numbers that can be used on a desk-calculator -
say between 10

6
 and 10

-6
. Such numbers can be equally well

represented in fixed-point format. Floating-point is not needed,
although if hardware is available it might as well be used. There are
cases, especially in physics, when large exponents occur - 10

43
 or 10

-

13
. But this usually indicates that the proper units have not been

chosen, or maybe even that logarithms should be used.

Of course compilers do not implement fixed-point, so people don't
use it. We are in a position to implement it, and to take advantage of
the speed possible with fixed-point (integer) instructions. What does a
fixed-point number look like? Choose the number of decimal places
you want to use. You may change this from time-to-time, but
shouldn't mix numbers with different precision. Have your NUMBER

– 42 –

subroutine align all numbers (with decimal points) as if you had typed
exactly that number of decimal places. Thereafter treat that number
like an integer. That is, if you choose 3 decimal places:

 1. is considered 1.000 and treated as 1000

 3.14 is 3.140 and 3140

 2.71828 is 2.718 and 2718

 -.5 is -.500 and -500

I wouldn't bother rounding unless your application demanded it, or
your hardware made it easy.

You can add and subtract such numbers without concern; their
decimal points are aligned. After multiplying 2 numbers, you must
divide by 1000 to re-align the decimal points. Hardware usually
facilitates this; the result of a multiply is a double-precision product in
the proper position for a dividend. Before dividing 2 numbers, you
must multiply the dividend by 1000 to maintain precision and align the
decimal points. Again this is easy.

So providing your words are large enough to store the number of
decimal places you need, fixed-point arithmetic is easy. If you have
the hardware, double-precision numbers and operations let you deal
with larger numbers. Just as easily. And much easier than simulating
floating-point operations. You may have to write your own square-root
and trig-function subroutines, but there are approximations available
that make this not-difficult. And they'll be much faster than the
equivalent simulated floating-point subroutines.

Aligning decimal points is easy to visualize, and avoids truncation
problems. However you may prefer to align binary points. That is,
instead of 3 decimal places, keep 10 binary places to the right of the
point. The multiplication and division by 1000 can then be replaced by
binary shifts - the equivalent for binary - which are much faster. You
must balance the gain in speed against the problem of alignment
during conversion (input and output) and truncation during
multiplication and division being more subtle. And possibly the
difficulty of explaining your arithmetic.

– 43 –

3.4.2 Input conversion

Now let's discuss the NUMBER subroutine in detail. First, why is it a
subroutine? If you examine the program I've outlined so far, and even
the program as augmented by the end of the book, you'll fiind
NUMBER is called only once - in the control loop. By my own rules
NUMBER should thus be in-line code. However, I can't bring myself to
put it in line; the logic in NuMBER is so complex that I want to isolate
it away from the control loop, to emphasize its logical function - one
purpose of a subroutine - and to reduce confusion in the control loop
itself; also I'm never confident that I won't want to call NUMBER from
some other routine, in fact I have. But I think that such violations of
programming standards should be explicitly recognised.

The key to a good NUMBER subroutine is another subroutine that it
calls. This subroutine has 2 entry points: SIGNED tests the next
character for minus, sets a switch, zeros number-so-far and falls into
NATURAL. NATURAL fetches characters, tests that they're digits,
multiplies the number-so-far by 10 and adds the digit. It repeats until it
finds a non-digit.

With this routine, NUMBER can work as follows: set the input pointer
to the start of the aligned word, call SIGNED. If the stopping character
is a decimal point, clear counter, call NATURAL to get the fraction,
and use counter to choose a power-of-ten to convert to a floating or
fixed-point fraction. In any case, apply SIGNED's switch to make
number-so-far negative. Exit.

The routine that calls NUMBER can test the stopping character:

 If it is a space, the conversion was successful.

 Otherwise, the word was not a number.

For example, the following are numbers:

 0 3.14 -17 -.5

The following are not:

 0- 3.14. +17 -.5Z X 6.-3 1.E3

– 44 –

In each case NUMBER will stop on a non-space. The number-so-far
will be correctly converted up to that point (possibly 0) but it is of no
value.

SIGNED/NATURAL is a valid subroutine since it is called twice.
Moreover, if you define other number formats, you'll find it useful. For
example, the format ft'in

 After calling SIGNED, if the stopping character is a ' multiply
number-so-far by 12 and call NATURAL. Then proceed as
usual, testing for decimal point.

If you want to verify that "in" are less than 12, you'll want to modify
this slightly.

In NATURAL the number-so-far is multipled by 10. Don't use a litereal
10, but rather define a field (BASE) and store a 10 there as multiplier.
Then you can change BASE to 8 (or 16) and handle octal numbers.
You can even change it to 2 to use binary numberes. NATURAL
should test for digits by comparing them with BASE, thus prohibiting
9 in an octal number. Hexadecimal input numbers cause an additional
problem because the digits A-Z do not follow 9 in standard character
sets. It is thus harder to recognise digits; but this problem is isolated
in a single place (NATURAL) and is easy to code:

 An origin must usually be subtracted from a digit to get its
binary value. If BASE is 16, a different origin is subtracted
from A-F.

NUMBER should be efficient, at least in recognising words that are
not numbers. Not so much because you will use so many numbers,
but because you will examine many words that aren't numbers. We
will discuss this further in Chapter 8. It is also important that you
examine the aligned copy of a word. There are several reasons: to
avoid trouble with the input pointer, to guarantee a terminal space.
However this creates a problem: the largest number you will use must
fit in the aligned word; this may require a longer word than you would
otherwise use. A number longer than word-size will have its right-
most digits discarded. This will probably not destroy its numeric
appearance so that no error will be detected; but the conversion will
be incorrect. This problem is not serious, just be aware of it.

– 45 –

3.4.3 Output conversion

Numeric output is harder than numeric input because there is an extra
step involved. During input, you multiply the number by 10 and add
each digit. You can work from left to right. During output, you divide
by 10, save the remainder for the digit, and repeat with the quotient
until it becomes 0. You get the digits from right to left, but you want to
type them from left to right.

Thus you need somewhere to store the digits temporarily. A good
place is the far end of the message buffer. The space is unused since
you presumably have enough space for the number. Of course, you
can use the stack. If you place a space at the right end of your
temporary storage, and then deposit the digits from right to left, you
can use the TYPEB subroutine to finally type the number.

You'll probably want to handle both negative numbers and fractions.
Remember the number is negative and work with its absolute value.
After you're finished, prefix a minus. Fractions require 2 conversion
loops: one to convert the fraction, counting the number of digits and
depositing a decimal point; another to convert the integer, stopping
when the quotient becomes 0. You don't want to test the quotient in
the fraction.

If you take the care, and spend a couple of instructions, you can
improve the appearance of your numbers by:

 Not typing a decimal point if the number has no decimal
places.

 Not typing a leading zero to the left of the decimal point.

You will probably have several dictionary entries specifying different
output formats. For example, each kind of number: integer, float,
complex will need its own output routine. However the actual
conversion should be done by a single subroutine with parameters to
distinguish special cases. That is, a single subroutine inverse to the
NUMBER subroutine. The similarities among different numbers are
much greater than their differences.

If you use decimal fixed-point fractions, you already have a field D
that specifies the number of decimal places. The same field is used to

– 46 –

control decimal placement on output. Ordinarily decimal places on
input and output will be the same. Even with floating-point numbers
you need that field, since you're rarely interested in full precision
output.

If you want to produce reports - carefully formatted columns of
numbers - you will need to right-justify numbers. That is, to line up
decimal points. For this you need another parameter F, the width of
the field in which the number is to be right-justified. It's easy to use:
after converting the number right-left, compute the number of spaces
you need and call SPACE. Then call TYPEB. In determining spaces,
remember that TYPEB always types a space after the number. Thus
you will always have at least a single space between numbers. If the
number won't fit in the field you specify, you'll still have that one
space, and the full number will be typed - fouling up the report format
- but showing you the bad number.

Let me acknowledge that if you are going to right-justify numbers you
can place the digits directly into position from right to left, for you
know where the rightmost digit must go. But then you must space-fill
the message buffeer before starting output, and you can't type
unbuffered output immediately. However, my main objection is that
you can't compose free-format output. For example, place a number
in a sentence without extra leading spaces. And very often
unformatted output is adequate, saving you having to specify field
sizes you don't care about.

Depending on your formatting requirements, there are other
dictionary entries you might want: A SPACE entry, to space the
number of positions on the stack. It can even space backwards - by
changing the output pointer - if the stack is negative. This is useful if
you want to suppress that space provided by TYPEB. A tab entry
might calculate the amount to space in order to reach a specific
position on the stack.

– 47 –

3.5 Stacks

We will be using several push-down stacks and I want to make sure
you can implement them. A push-down stack operates in a last-in
first-out fashion. It is composed of an array and a pointer. The pointer
identifies the last word placed in the array. To place a word onto the
stack you must advance the pointer, and store the word (in that order).
To take a word off the stack you must fetch the word and drop the
pointer (in that order). There is no actual pushing-down involved,
though the effect is the same.

A stack pointer is an excellent use for an index register, if you have
enough. Indirect addressing is also a possibility, especially if you
have an add-to-memory instruction.

– 48 –

3.5.1 Return stack

This stack stores return information. One use is to store the return
address for subroutines, when subroutine calls use an index register.
The last-in first-out nature of a stack is exactly the behavior required
for nested subroutine calls. We will later encounter several other
kinds of return information that can be stored in the same stack. It is
important not to attempt to combine the return stack and the
parameter stack. They are not synchronized. 8 words is probably
enough space for the return stack.

– 49 –

3.5.2 Parameter stack

This stack is the one I intend when I say simply stack. Numbers,
constants, variables are all placed on this stack, as will be discussed
later. This stack is used to pass parameters among routines. Each
routine can find its arguments there, regardless of how many other
parameters are present, or how long ago they were placed there. You
should not implement a parameter stack less than 16 words long.

A valuable refinement to the parameter stack is to set aside a register
to hold the word on top of the stack. Several rules must be religously
observed if this is not to cause trouble:

 You must never use this register for any other purpose.

 You must keep this register full; no flag to indicate that it's
empty.

If you cannot fulfill these conditions, you're better off with the stack
entirely in core.

We need some terminology:

 You place a word onto then stack, thereby increasing its size.

 You drop a word from the stack, thereby decreasing its size.

 The word on top of the stack is called the top word.

 The word immediately below the top of the stack is called the
lower word.

You may need to control the parameter stack from the input. These
words (dictionary entries) are extremely useful, and illustrate the
terminology above:

 DROP drop the top word from the stack.

 DUP place the top word onto the stack, thereby duplicating it.

 SWAP exchange the top and lower words.

 OVER place the lower word onto the stack; move it over the
top word.

– 50 –

3.6 Dictionary

Every program with input must have a dictionary. Many programs
without input have dictionaries. However these are often not
recognised as such. A common 'casual' dictionary is a series of IF . . .
ELSE IF . . . ELSE IF . . . statements, or their equivalent. Indeed this is
a reasonable implementation if the dictionary is small (8 entries) and
non-expandable.

It is important to acknowledge the function and existence of a
dictionary, to concentrate it in a single place and to standardize the
format of entries. A common characteristic of bad programs is that
the equivalent of a dictionary is scattered all over the program at
great cost in space, time and apparant complexity.

The most important property of an entry is one that is usually
overlooked. Each entry should identify a routine that is to be executed.
Very often many entries execute the same routine. Perhaps there are
few routines to choose among. This tends to conceal the importance
of specifying what is to be done for each entry. By placing the
address of a routine in each entry, an optimal and standard procedure
for getting to that code can be designed.

Significantly, the IF . . . ELSE IF construction has the characteristic of
associating a routine with each entry.

– 51 –

3.6.1 Entry format

There are 2 distinct ways to organize dictionary entries. The choice
may depend upon hardware characteristics, but I recommend the
second. A dominant feature of entries is that they have variable length.
A part of the entry may be the code to be executed, or parameters or
an area of storage, all of which may have arbitrary length.

One possibility is to split an entry into two portions, one of fixed size,
one of variable size. This permits scanning fixed size entries to
identify a word and often there are hardware instructions to speed
this search. A part of the fixed entry can be a link to a variable area; of
course you choose the fixed size so as to make the link in the nature
of an overflow - an exception.

However, since input is relatively small volume (even as augmented in
definitions), to minimize the time required to search the dictionary
does not lead to a global optimum. You can gain greater flexibility, a
simpler allocation of core, and ultimately greater speed by chaining
the variable-sized entries together directly. This is the organization I
shall discuss.

An entry has 4 fields: the word being defined, the code to be executed,
a link to the next entry and parameters. Each of these warrants
discussion.

The format of a word must be decided in conjunction with the word
input routine. It should have a fixed size which may be smaller than
that defined by NEXT, but must be a multiple of hardware word size.
However, more sophisticated applications use the dictionary words to
construct output messages. Then it is important not to truncate words,
in which case the word field must have variable length. To mark the
size of this field the terminal space should be used rather than a
character count. To handle a variable word field within a variable
entry, the word should extend in one direction (backwards) and the
parameter in the other (forwards). Fixed or variable word size requires
application of the Basic Principle.

The code field should contain the address of a routine rather than an
index to a table or other abbreviation. Program efficiency depends
strongly on how long it takes to get to the code once a entry is
identified, as discussed in 3.9. However, the small size of your

– 52 –

program may permit this address to fit in less space than the
hardware address field.

The link field may likewise be smaller than hardware-specified. It
should contain the absolute location of the next entry rather than its
distance from the current entry.

The parameter field will typically contain 4 kinds of information:

 A number, constant or variable, of variable size. The nature of
the number is determined by the code it executes.

 Space in which numbers will be stored - an array. The size of
the array may be a parameter, or may be implicit in the code
executed.

 A definition: an array of dictionary entries representing virtual-
computer instructions; see 3.9.

 Machine instructions: code compiled by your program which
is itself executed for this entry. Such data must probably be
aligned on word boundary, the other need not.

– 53 –

3.6.2 Search strategies

One basic principle applies to dictionary search: it must be
backwards - from latest to oldest entries. You have perhaps noticed
that the dictionary is not arranged in any order (ie. alphabetical) other
than that in which entries are made. This permits the same word to be
re-defined, and the latest meaning to be obtained. There is no trade-
off valuable enough to compromise this property.

To identify a word, place it (or its first portion) in a register and
compare for equality with each entry (or its first portion). An algebraic
comparison is adequate. Concern is sometimes expressed that
treating words as floating-point numbers may permit a false equality.
This has 0 probablity and you can always change the word - ignore it.

A full-word compare (rather than a character-by-character) should be
used for speed. A match is usually found on the first portion, and
extensions may be treated with less efficiency (though still full-word
compares).

Fixed-length entries may be scanned with a simple loop. Linked
entries require an equally simple loop, but usually a slower one.
However the speed of a linked search can be increased without limit:
Rather than link each entry to its physical predecessor, link it to a
predecessor in one of a number of chains. Scramble the word to
determine which chain it belongs in, both when you enter it and when
you search for it. Thus, only a fraction of the total dictionary need be
searched to find the word or assure its absence.

The number of chains should be a power of 2: 8 will provide a useful
increase in speed. The scramble technique may be very simple: add
the first few characters together and use the low-order bits. In order
to maintain a linked dictionary, the next available location and the
location of the last entry must be kept. A multiply-chained dictionary
requires the location of the last entry for each chain: a small price in
space for a large gain in time.

However, search time is not a important consideration, and I advise
against multiple chains unless the dictionary is very large (hundreds
of entries).

– 54 –

3.6.3 Initialization

The dictionary is built into your program and is presumably initialized
by your compiler. This is centainly true if you have fixed-size entries.
Variable-sized entries must be linked together, however, and this can
be beyond the ability of your compiler, especially if you have multiple
chains.

In such a case, it is a simple matter to write a loop that scans the
dictionary and establishes the links. It should scan the core occupied
by the dictionary and recognise an entry by some unique flag (7's in
the link field). It can the pick up the word, scramble it and add it to the
appropriate chain.

This is purely temporary code. Although it may call permanent
subroutines to scramble and link, the initialization code will have no
further use. Thus it should be placed where it can be overlaid as the
program proceeds. The message buffer, if large enough, or the disk
buffer are possibilities.

Other things may need initializing, particularly any registers that are
assigned specific tasks. All such duties should be concentrated in
this one place.

– 55 –

3.7 Control language, example

Applications tend to be complicated before they become interesting.
But here's a fairly common problem that shows off a control language
to advantage. Implementation would be tricky, execution woud be
inefficient; but the program would be simple, and its application
flexible.

The problem is to examine a sequential file, select certain records,
sort them, and list them - in many different ways. Suppose these
variables define the fields in the record:

 NAME AGE SALARY DEPT JOB SENIORITY

Let's define these verbs:

 LIST SORT EQUAL GREATER LESS

Each acts upon the temporary file produced by the previous, in
accordance with the following examples:

List in alphabetical order all employees in dept 6:

 6 DEPT EQUAL NAME SORT LIST

First we choose records with dept = 6 and copy them into a temporary
file. Then we sort that file by name. Then we list it.

List twice, by seniority, all employees holding job 17 in dept 3:

 17 JOB EQUAL 3 DEPT EQUAL SENIORITY SORT LIST LIST

List, by age, all employees whose salary is greater than $10,000; and
identify those whose seniority is less than 3:

 10000 SALARY GREATER AGE SORT LIST 3 SENIORITY LESS
LIST

Several comments seem indicated. We can apply a logical "and" by
using several select verbs in sequence; we cannot use a logical "or".

– 56 –

We can sort on several fields, if our sorting technique does not
unnecessarily re-arrange records. We need 2 more verbs:

 REWIND END

to start over with the original file, and to quit.

Actually many other capabilities could be provided, including the
ability to locate specific records and modify them. But rather than
design a particular application, I just want to show how nouns and
verbs combine to provide great flexibility with a simple program.
Notice how even such a simple example uses all our facilities: the
word subroutine, the number subroutine, the dictionary, the stack.
We're not speculating, we are providing essential code.

– 57 –

4. Programs that grow

So far our dictionary has been static. It contains all the entries you
need - placed there when the program was compiled. This need not be.
We can define entries that will cause additional entries to be made
and deleted. Let me point out why this might be desirable.

You have a program that controls an application. Based upon the
words you type, it will do as you direct. In Chapter 3 we provided the
ability to type out results. Not the sort of results that are the inevitable
result of the application, but variables that you'd maybe like to see.
More a conversational sort of output, since it is controlled directly by
input.

There are 2 problems with this situation. First, to add an entry to your
dictionary you must re-compile the program. Clearly, you won't be
adding many entries - but maybe you won't have to. Second, all your
entries must be present at the same time. This creates, not so much a
volume problem, as a complexity problem. If your application is
complex, it becomes increasingly difficult to make all aspects
compatible. For instance, to find distinct names for all fields. Third, if
you find an error in an entry you must recompile the program. You
have no ability to correct an entry - though of course you could define
entries to provide that ability.

If you can create dictionary entries you can accomplish 2 things: You
can apply your program to different aspects of your application -
without conflicts and reducing complexity. You can create a
dictionary entry differently, and thus correct an error. In fact, the
purpose of your program undergoes a gradual but important change.
You started with a program that controlled an application. You now
have a program that provides the capability to control an application.
In effect, you have moved up a level from language to meta-language.
This is an extremely important step. It may not be productive. It leads
you from talking to your application to talking about your application.

Another way of viewing the transition is the entries in your dictionary.
At first they were words that executed pieces of code that constituted
your application program. A purely control function. Now they tend to
become words that let you construct your application program. They
constsitute a problem-oriented-language. The distinction need not be

– 58 –

abrupt but it is irreversible. You change from an application to a
system programmer - your system being your application.

I hesitate to say whether this is good or bad. By now you surely know
- it depends on the application. I suspect any application of sufficient
complexity, and surely any application of any generality, must
develop a specialized language. Not a control language, but a
descriptive language.

Some examples: A simulator does not want a control language. It is
important to be able to describe with great facility the system being
simulated. A linear-programming problem needs a language that can
describe the problem. A compiler actually provides a descriptive
language for use with the programs it compiles. A compiler-compiler
describes compilers. What is a compile-compiler that can execute the
compiler it describes and in turn execute the program it compiled?
That is the question!

Let me now assume that you have a problem that qualifies for a
descriptive language. What dictionary entries do you need?

– 59 –

4.1 Adding dictionary entries

Let us now assume that you want to expand your dictionary; that you
have a sufficiently complex application to justify a specialized
language. How do you make a dictionary entry?

Recall the control loop: it reads a word and searches the dictionary. If
you want to define a word, you must not let the control loop see it.
Instead you must define an entry that will read the next word and use
it before RETURNing to the control loop. In effect, it renders the
following word invisible. It must call the word subroutine, which is
why it is a subroutine rather than a routine. Let us call such an entry a
defining entry, its purpose is to define the next word.

In principle we only need one defining entry, but we must supply as a
parameter the address of the code to be executed for the entry it
defines. Remember that 4 fields are required for each entry: the word,
its code address, a link, and (optionally) parameters. The word we
obtain from the word subroutine; the link we construct; the
parameters we take from the stack. We could also take the address
from the stack, but it's more convenient to have a separate defining
word for each kind of entry to be constructed. That is, to have a
separate defining entry for each address we need, that provides the
address from its parameter field.

I'm afraid this is confusing. We have one entry that supplies the
address field of a new entry from its own parameter field. Let's take an
example; suppose we want to define a constant:

 0 CONSTANT ZERO

0 is placed on the stack; the code for the word CONSTANT reads the
next word, ZERO, and constructs a dictionary entry for it: it
establishes the link to a previous entry, stores 0 from the stack into
the parameter field, and from its own parameter field stores the
address of the code ZERO will execute. This is, presumably, the
address of code that will place the contents of the parameter field
onto the stack.

Thus for each kind of entry we will be making, we need a defining
entry to supply the code address and do the work. Since all defining
entries have much in common, you should write an ENTRY subroutine

– 60 –

they can call. It should have as parameter the code address, and
construct all of the new entry except the parameter field, which is
specialized by the defining entry.

Other defining entries might be:

 0 INTEGER I - an integer-size parameter field is initialized to 0;
its address will be placed on the stack.

 1. REAL X - a floating-point parameter field is initialized to 1.

 8 ARRAY TEMP - an 8 word parameter field is cleared to 0; the
address of its 1st word will be placed on the stack.

I must emphasize the word "might". Different applications will require
different defining entries; even the same word might act differently for
different applications. But you are in a position to define any kind of
noun you need, and then create as many instances of that noun as
you like. It is a futile exercise to attempt to establish a universal set of
nouns. Compiler languages have repeatedly stumbled by not
providing enough, and no matter how many they provide, someone
will want one more.

For example, you might define the following noun:

 0 8 INDEX J - J is defined to be an index, that varies from 0 to
8. When executed, it adds its value to the top of the stack.

If you then define appropriate verbs to advance, test and reset J, you
can have a powerful indexing facility. Or define:

 3 VECTOR X 3 VECTOR Y 9 VECTOR Z

and define arithmetic verbs to implement vector arithmetic:

 X Z = Z Y + add X and Y, store in Z.

 X Y Z *C multiply X and Y (outer product), store in Z.

Anything you need for your application you can define. But you can
never define everything. Basic Principle!

– 61 –

4.2 Deleting entries

So far we've only discussed defining nouns. Actually you'll be using
more verbs than nouns, but they require much longer explanations.
Here is one kind of verb.

If you can add entries to your dictionary, eventually you're going to
want to get rid of them. You'll need to delete entries in order to re-
enter them correctly, or delete entries in order to make room for
another application. After all, your dictionary is finite; no matter how
large you make it, you will be aware of its upper limit. Parkinson's Law
may be rephrased: Dictionaries expand to fill the available space.

There is only one feasible way to delete entries. That is to delete all
entries after a certain point. If you were to delete specific entries, you
would leave holes in the dictionary, since it occupies contiguous core.
If you attempt to pack the dictionary to recover the holes, you are
faced with a wicked re-location problem, since we use absolute
addresses. To avoid absolute addresses is inefficient and
unnecessary.

Deleting trailing entries is a completely satisfactory solution. I know
of no argument to prove thie, except to say try it and see. You'll find
that, in practice, you add a bunch of entries; find a problem; delete
those entries; fix the problem; and reenter all the entries. Or you fill
your dictionary for one application; clear it; and re-fill with another
application. Or you might re-load the same application just to clear
some fields. In each case, you want to get rid of all the latest entries.

One exception is when you use some entries to construct others. The
constructing entries are then no longer needed, and there is no way
to get rid of them. It happens; I may even give some examples later.
But all you lose is dictionary space, and I can't see a practical
solution.

OK, how do you delete trailing entries? You want to mark a point in
your dictionary and reset evereything to that position. One thing is the
dictionary pointer that identifies the next available word in the
dictionary. That's easy. However you must reset the chain heads that
identify the previous entry for each of your search chains. It only

– 62 –

takes a small loop: follow each chain back, as you do when searching,
until you find a link that preceeds your indicated point.

If you have fixed-size entries, you must reset the pointer to the
parameter area, but you don't have to follow links.

A convenient way to specify the point you want to delete from is to
place a special entry there. A verb that will delete itself and
evereything following it when you execute it. For example,

 REMEMBER HERE

is a defining entry. When you type HERE, it is forgotten; it both marks
a place in the dictionary and executes the deleting code. HERE
doesn't need a parameter field, unless you use fixed-length entries,
whereupon it must save the current value of the parameter pointer.
This is our first example of a verb-defining entry.

– 63 –

4.3 Operations

Recall that the stack is where arguments are found. There are some
words you may want to define to provide arithmetic capabilities. They
are of little value to a control language, but essential to add power to
it. I'll use logical constructs TRUE (1) and FALSE (0). And remember
the definition of top and lower from 3.6.

Unary operators: change the number on top of the stack.

 MINUS changes sign of top.

 ABS sets sign positive.

 ZERO if top is zero, replace it with TRUE; otherwise place
FALSE onto the stack.

 NONZERO if top is nonzero, place TRUE onto the stack;
otherwise leave it alone (leave FALSE on the stack).

Binary operators: Remove top from the stack and replace lower by a
function of both.

 + add top to lower.

 * multiply lower by top.

 - subtract top from lower.

 / divide lower by top, leave the quotient.

 MOD divide lower by top, leave the remainder.

 MAX if top is larger than lower, replace lower by top.

 MIN if top is smaller than lower, replace lower by top.

 ** raise lower to power of top.

These are only samples. Clearly you are free to define whatever words
you feel useful. Keep in mind that you must place the arguments on
the stack before you operate on them. Numbers are automatically
placed on the stack. Constants are too. Thus the following make
sense:

 1 2 +

 PI 2. *

 1 2 + 3 * 7 MOD 4 MAX

 1 2 3 + *

– 64 –

This notation permits arithmetic calculation in the same manner a
desk calculator. It is often called parenthesis-free representation or
perhaps right-handed Polish, but it is simply the way you work with
arguments on a stack. Conventional algebraic notation is much
harder to implement (8.2).

Other binary operations are the arithmetic relations: these leave a
truth value on the stack:

 = are they equal?

 < is top greater than lower?

 > is top less than lower?

 >= is top not greater than lower?

 <= is top not less than lower?

The logical operations include a unary and several binary:

 NOT if top is FALSE, replace with TRUE; otherwise replace
with FALSE.

 OR logical or.

 AND logical and.

 IMP logical implication.

 XOR logical exclusive or.

Your stack must have a fixed word-length. However the operations
mentioned above might apply to several kinds of numbers: integers,
fixed-point fractions, floating-point fractions, double-precision
fractions, complex numbers, vectors of the above kinds. The truth
values are only 1 bit. Clearly, the stack must be able to hold the
largest number you expect to use. Less clear is how you should
distinguish among various kinds of numbers.

One way is to define separate operations for each kind of number:

 + integer and fixed-point add (they are the same).

 +F floating-point add.

 +D double-precision add.

Another is to make a stack entry long enough to contain a code
identifying the kind of number. This makes the code defining each
operation more elaborate and raises the problem of illegal arguments.

– 65 –

I recommend not checking arguments and defining separate
operations, for reasons of simplicity. Actually, you are working with
one kind of number at a time and the problem may never arise.

Do not bother with mixed-mode arithmetic. You never need it, and it's
not convenient often enough to be worth the great bother. With
multiple word numbers (complex, double-precision) you may put the
address of the number on the stack. However, this leads to 3-address
operations with the result generally replacing one of the arguments.
And this, in turn, leads to complications about constants.

In general, the number of things you might do with numbers increases
indefinitely. Many of these are mutually incompatible. Basic Principle!

– 66 –

4.4 Definition entries

I must now describe an entry more complicated than any so far,
though not the most complicated that you'll see. It is also exceptional
in that it's not optional. For this ability is required for any effective
application language: to be able to define one word in terms of others.
To abbreviate, if you will. You recall that I characterised words as
being simple in themselves, but powerful in combination. Well here is
a way to combine words.

A definition consists of a defining entry ":" followed by a series of
words terminated by ";". The intention is that the word defined by ":"
has the meaning expressed by the words that follow. For example:

 : ABS DUP 0 LESS IF MINUS THEN ;

This is a definition of the word ABS. Its purpose is to take the
absolute value of the number on the stack. It does this by executing a
series of words that have the proper effect.

You may consider this a rather clumsy definition of ABS. Especially
since there is an instruction on your computer that does exactly that.
you're quite right, definitions tend to be clumsy. But they let us use
words that we hadn't the foresight to provide entries for. Given certain
basic words we can construct any entry we need. Definitions provide
a succinct distinction betwen a control language and an application
language: The control language must have all its capabilities built in;
the application language can construct those capabilities it needs.

To implement definitions is simple, yet awkwardly subtle. The
parameter field of a definition contains the addresses of the
dictionary entries that define it. You must somehow deposit these
entries in the parameter area, and later fetch them when you execute
the definition. The complementary processes of definition and
execution are more involved than for any other entry we've
encountered.

Before I describe these processes in detail, let me try to clarify exactly
what a definition is. You recall that the code executed for a word is a
routine, and not a subroutine. And yet a series of words is like a
series of subroutine calls, for the control loop serves the function of
returning to a position where the next word can be found. You might

– 67 –

consider a definition to be just that: a series of subroutine calls with
the addresses of the subroutines constituting the definition.

Another viewpoint is concealed in an abbreviation I use: I speak of
"executing a word", when I really mean executing the code associated
with the word. Or even more precisely, executing the code whose
address is stored in the dictionary entry for the word. The
abbreviation is not only convenient, it suggests that a word is an
instruction that can be executed. And indeed, it is helpful to think of a
word as an instruction: an instruction for a computer that is being
simulated by our real computer. Let's call that imaginary computer the
"virtual computer". Thus when you type words you are presenting
instructions to the virtual computer. The control loop becomes the
instruction fetch circuitry of the virtual computer.

If we extend this analogy to definitions, a definition becomes a
subroutine for the virtual computer. And the process of defining a
definition is equivalent to compiling this subroutine. We'll return to
this analogy later.

You'll see that the virtual computer is a real help in understanding
definitions. In fact, it originally led me to apply compiler techniques to
definitions - techniques that otherwise wouldn't have occurred to me.
But although it may be helpful to programmers, it is only confusing to
non-programmers. So I prefer the name "definition" for this type of
entry, and the phrase "defining one word in terms of others" as its
explanation.

Definitions are extremely powerful. Why, is hard to explain, hard even
to comprehend. Their value is best appreciated by hindsight. You
complete a ludicrously simple implementation of an application,
discover that you used a dozen definitions and nested them 8 deep.
The definitions appear responsible for the simplicity.

But there are several properties that emphasize the value of
definitions over their equivalent, a series of subroutine calls. First,
you needn't be concerned about call sequence, about what registers
are available and what must be saved; simply type a word. Second,
one definition can execute another. That is, you can nest definitions,
again without any concern about saving return addresses or other
register conflicts. You can even use definitions recursively without
concern. Third, you can pass arguments among definitions
effortlessly, in fact invisibly, since they are on the stack. Again you

– 68 –

have no concern for calling sequence or storage conflicts. Plenty of
temporary storage is available, too; again on the stack.

Of course you have to pay for this convenience, though probably less
than you would with FORTRAN subroutine calls. The price is the
control loop. It's pure overhead. Executing the code for each entry of
course proceeds at computer speed; however obtaining the address
of the next code to execute takes some instructions, about 8. This is
why I urge you to optimize your control loop.

Notice that if the code executed for words is long compared to the
control loop, the cost is negligible. This is the principle of control
languages. As the code shrinks to control loop size, and smaller,
overhead rises to 50% and higher. This is the price of an application
language. Note, however, that 50% overhead is easily reached with
operating systems and compilers that support an application program.

I suggest that you compromise. Code the computation-limited
portions of your problem and use definitions for the rest. The use of
definitions to control, rather than perform, calculations is inexpensive.
And the ease of constructing them reduces the time and effort, and
thus cost, of implementation.

– 69 –

4.4.1 Defining a definition

The defining entry ":" acts just like any other. It passes the address
EXECUTE to the ENTRY subroutine. I'll discuss that code in the next
section.

It then sets a switch STATE. The control loop must be changed to test
STATE: if it is 0, words are executed as I've already described; if it is 1,
words are compiled. Let me repeat: if you add definitions to your
program, you must modify the control loop so that it will either
execute or compile words. If you plan to include definitions from the
start, you should plan the control loop accordingly. Implement the
switch so that executing words is as fast a possible; you'll execute
many more words than you'll compile.

To compile a word is simple. After finding it in the dictionary, you
have the address of its dictionary entry. Deposit this address in the
parameter field. Notice 2 things: we already have a mechanism for
depositing words in the dictionary. ENTRY uses it as well as many
defining entries for parameters. The dictionary pointer DP identifies
the next available word in the dictionary. All you must do to compile a
word is to store its address at DP and advance DP. Also notice that
we deposit the address of the entry not the address of the code
executed. This is so we have access not only to the code but also to
the parameter field, and even the word itself should we need it.

All right, so much for compiling words. What about numbers? A
number presented to a compiler is called a literal. And literals are a
problem to any compiler. Fortunately we can define our virtual
computer so that it can handle literals in-line. You must again modify
the control loop to test STATE when a number is successfully
converted.

Before showing how to compile a number, let me define pseudo-
entries. A pseudo-entry is a dictionary entry that is not in the
dictionary. That is, it has the format of an entry but it is not linked to
other entries. Thus it would never be found during a dictionary search.
You see, we occassionally need entries to permit the virtual computer
to run smoothly, but we don't want to slow the dictionary search by
including non-referencable entries.

– 70 –

As you've probably guessed, in order to compile a literal you compile
a pseudo-entry. You then follow it by the number itself; that is, you
compile the number also. The result is a double-length virtual-
computer instruction. The code executed for the pseudo-entry must
fetch the number and place it onto the stack. Thus literals that are
compiled have the same effect, when executed, as if they were
executed immediately.

Notice that if you have different-size literals, you'll need different
pseudo-entries for them And having brought up the subject, let me
discuss word length a moment. Word length for the virtual computer
should be about 12 bits. This is because each instruction is
composed of simply a dictionary address and 12 bits is enough to
identify one of perhaps 1000 entries. If your real computer word
length is longer than 18 bits you should pack several virtual-computer
instructions into one word. This is possibly awkward, since you must
modify DP to address other than a real computer word. But you'll save
a lot of space.

Incidently, since literals require extra space when compiled, you
might define commonly used literals as words:

 1 CONSTANT 1

Recall that numbers may be words, since the dictionary is searched
before numeric conversion is attempted. And a word requires only a
single-length virtual-computer instruction. On the other hand, a
dictionary entry takes much more space than a compiled literal, so
watch the trade-off.

The code in the control loop that compiles words much watch for ";".
It is compiled as usual, but it also resets STATE to prevent further
compiling. It also performs another task, which requires a digression.

Notice that when we're compiling a definition we're searching the
dictionary for each word. If we reference the word we've just defined,
we'll find it. Thus we'll have made a recursive reference. If you want
recursive definitions, fine. However it's extrememly convenient to
exchange recursion for re-definition. That is, to understand a
reference to itself inside a definition to refer to an earlier definition.
For example,

– 71 –

 : = SWAP = ;

Here I redefine the = verb to operate upon arguments in the opposite
order. I could use a different word for that purpose, but = has
mnemonic significance.

In any case, the capability is easy to provide. Let ":" bugger the
search so the latest entry cannot be found. And let ";" unbugger the
search and thereby activate the new definition. If you want recursive
definitions, you could provide a defining entry ":R" that did not
bugger, providing you make ";" work for both. I'll mention another
technique later.

– 72 –

4.4.2 Executing a definition

I named the code executed for a definition EXECUTE. It must modify
the instruction-fetch circuitry of the virtual computer.

Recall the structure of the control loop: the routine NEXTW provides
the address of a dictionary entry; the routine associated with this
entry is entered; it ultimately returns to NEXTW. The same procedure
is required in order to execute a definition, with the exception that
NEXTW is replaced by NEXTI. Where NEXTW read a word and found it
in the dictionary, NEXTI simply fetches the next entry from the
parameter field of the definition.

Thus you need a variable that identifies the routine to be entered for
the next entry. One implementation is to define a field NEXT that
contains either the address of NEXTW or NEXTI. If you jump indirect to
NEXT, you will enter the appropriate routine. One task of EXECUTE is
therefore to store the address of NEXTI into NEXT, causing
subsequent entries to be obtained in a different way.

Of course NEXTI must know where to find the next entry. Here the
virtual computer analogy is extended by the addition of an instruction
counter. If you define a field, preferably an index register, named IC it
can act exactly like an instruction counter on a real computer. It
identifies the next entry to be executed, and must be advanced during
execution.

You can now see the complete operation of NEXTI: fetch the entry
identified by IC, advance IC to the next enty, and return to the same
point NEXTW does to execute the entry (or compile it, as the case may
be). If you use definitions at all, you'll use them extensively. So NEXTI
should be optimized at the cost of NEXTW. In particular, the code that
executes (compiles) entries should be fallen into from NEXTI and
jumped to from NEXTW. This saves one instruction (a jump) in the
control loop using NEXTI. This can be 20% of the loop, apart from
actually executing the entry's code, for a substantial saving.

Now let's return to EXECUTE. Clearly, in addition to establishing
NEXTI it must initialize IC. But first it must save IC. The process is
analogous to a virtual-computer subroutine call. The obvious place to
save IC is the return stack. Although it is used for other purposes,
none of these conflict with such use. If one definition is executed from

– 73 –

within another, it is clear the current IC must be saved. Otherwise the
current value of IC is undefined.

One more routine is involved in this process. The code executed for
";" must return from the definition. This means simply that it must
restore IC from the return stack. However it must also restore the
value of NEXT, which was set to NEXTI by EXECUTE. You might store
the old value of NEXT in the return stack and let ";" recover it. Simpler,
perhaps, is to let the undefined value of IC be zero, and act as a flag
to restore NEXT to NEXTW. For while executing definitions, NEXT will
always contain NEXTI. Only when returning from a definition that
originated within the source text must NEXTW be reestablished. Since
while executing source text IC is irrelevant, it might as well by useful
in this limited way.

That's all there is to it. The combination of EXECUTE, NEXTI and ";"
provide a powerful and efficient subroutine facility. Notice that the
code "executed" for a definition might actually be compiled,
depending on the field STATE, as dicussed earlier. Notice also that
the entries executed by a definition might compile other entries. That
is, one entry might deposit numbers in the dictionary, using DP. Thus
although the fields IC and DP are similar in use, DP deposits entries
and IC fetches them, they may both be in use at the same time. If
you're short of index registers, don't try to combine them.

– 74 –

4.4.3 Conditions

Let me review briefly the process of defining a definition: The word ":"
sets a switch that modifies the control loop; it will now compile words
instead of executing them. The word ";" is compiled, but also causes
the switch to be reset, ending the process of compilation. Following
words will now be executed as usual.

We can thus view ";" as being an exceptional word, for it is - in a
sense - executed during compilation, at which time it resets that
switch. Of course it is also executed during execution of the definition,
with a different effect: it resets IC.

There are other words like ";" that must be executed during
compilation. These words control the compilation. They perform code
more complicated that simply depositing an entry address. In
particular, they are required to provide forward and backward
branching.

Rather than talk abstractly about a difficult and subtle point, I'll give
some examples of words that I've found useful. As always, you are
free to choose your own conventions, but they will probably resemble
mine in their basic effects.

Define the words IF, ELSE and THEN to permit the following
conditional statement format:

 boolean value IF true statement ELSE false statement THEN
continue

The words have a certain mnemonic value, though they are permuted
from the familiar ALGOL format. Such a statement can only appear in
a definition, for IF, ELSE and THEN are instruction-generating words.

At definition time, the word IF is executed. It compiles a forward jump.
Now I must sidetrack the discussion and define jumps. A jump
instruction for the virtual computer is similar to a literal. An in-line
literal is a double-length instruction. The code executed for the
pseudo-entry comprising the first half, uses the second half as a
parameter. Likewise for jumps: a pseudo-entry uses an in-line
parameter to change the virtual-computer instruction-counter (IC).

– 75 –

This parameter is the amount, positive or negative, to be added to IC:
positive for a forward jump, negative for a backward jump. It is a
relative jump address, and the whole construction is used by some
real computers.

Actually we need 2 jump pseudo-entries: a conditional jump and an
unconditional jump. The conditional jump jumps only if the stack is
non-zero, and it is a destructive operation (its argument is dropped).

All right, back to IF. At definition time it compiles the conditional jump
pseudo-entry, followed by a 0. For it doesn't know how far to jump.
And it places the location of the 0, the unknown address, onto the
stack. Remember that the stack is currently not in use, because we're
defining. Later it wil be used by those words we're defining, but at the
moment we're free to use it to help in the process.

Now look at ELSE. At definition time it compiles an unconditional
jump pseudo-entry followed by 0. But then it stores the current value
of DP, the next available location, into the location on the stack. Thus
it provides the distance for the conditional jump generated by IF.
Actually it must subtract to get a relative address, but the principle is
clear. In turn it leaves the location of its address on the stack.

Finally we come to THEN. It fixes-up the address that ELSE left
dangling. That is, it subtracts the stack from DP and stores the result
indirectly in the stack; and destructively. Thus the combination of IF,
ELSE and THEN use the stack to construct forward jump virtual-
computer instructions. Since ELSE and THEN act identically in fixing-
up the missing address, ELSE can be omitted without any
modification. Also since the stack is used to store unfulfilled jumps,
IF . . . THEN statements may be nested. The only restriction is that all
addresses are determined; that is, that all locations are removed from
the stack. This will be the case if every IF has a matching THEN; ELSE
is always optional.

Of course there's nothing unusual about this technique. All compilers
generate forward jumps in this manner. What is somewhat unusual is
applying it to the compilation of instructions for a virtual-computer.
But it seems to be the best way.

Let's consider a related construction. Very often we are faced with
logical expressions that consist of a string of ANDs or a string of ORs.
The truth value of such expressions may be determined before the

– 76 –

entire expression is evaluated. You can save time by quitting once
you know the final result. For example, consider the statement:

 a b AND c AND IF . . . THEN

where a, b, c are boolean expressions; and the statement would read
in ALGOL

 if a and b and c then . . .

If a is false, we might as well quit, since the disjunction cannot
possibly be true. If you re-write the statement as:

 a IF b IF c IF . . . THEN THEN THEN

the effect is the same; if a, b and c are all true the conditional
statement is executed. Otherwise not. Each IF generates a forward
jump that is caught by its matching THEN. Note that you must still
match IFs with THENs. In fact this is one sort of nested IF . . . THEN
statement. It is an extremely efficient construction.

Now consider the corresponding statement with ORs:

 a b OR c OR IF . . . THEN

or in ALGOL

 if a or b or c then

If a is true you may as well quit, for the conjunction cannot be false. If
you re-write the statement as

 a -IF b -IF c IF HERE HERE . . . THEN

and if you define

 : HERE SWAP THEN ;

 : -IF NOT IF ;

– 77 –

the statement works as follows: if a is true, -IF will jump; if b is true, -if
will jump; if c is false, IF will jump. The first HERE will catch b's jump
(the SWAP gets c's address out of the way); the second HERE
catches a's jump; THEN catches c's jump. Thus a and b jump into the
condition, while c jumps over it.

This is a slightly clumsy statement, but I've found no simpler solution.
If you used them regularly, you'd doubtless acquire facility, and it
would seem quite natural. Just watch that you match all IFs. Moreover
the same technique could be applied to more complex logical
expressions - with even greater clumsiness.

– 78 –

4.4.4 Loops

I'll continue with a couple more examples of words executed at
definition time. This time examples of backward jumps, used to
construct loops.

Consider the pair of words BEGIN and END, as used in a statement
like:

 BEGIN . . . boolean END

BEGIN stores DP onto the stack, thus marking the beginning of a loop.
END generates a conditional backward jump to the location left by
BEGIN. That is, it deposits a conditional jump pseudo-entry, subtracts
DP+1 from the stack, and deposits that relative address. If the boolean
value is false during execution, you stay in the loop. When it becomes
true, you exit.

BEGIN and END provide a loop terminated by a logical condition.
Let's define another loop. This one counts an index through a range
to control the looping:

 a b DO . . . CONTINUE

a and b represent arguments on the stack. DO acts just like BEGIN.
CONTINUE requires a new pseudo-entry that tests the top 2 words on
the stack for equality, and jumps if they are unequal. During
compilation CONTINUE deposits this pseudo-entry and then
computes the jump distance as did END. Thus CONTINUE uses
another conditional jump: one that tests the stack for equal, instead of
for false. It is also a non-destructive operation, so long as its
arguments are unequal. When they become equal and terminate the
loop, it drops them.

Presumably, inside the DO . . . CONTINUE loop the arguments are
modified so as to terminate the loop. This can be done many ways.
For example, to run the loop from 1 to 10:

 10 0 DO 1 + . . . CONTINUE

– 79 –

The first argument is 10, the stopping value; the second is 0, which is
immediately incremented to 1, the index value. Within the loop this
index is available for use. the DUP operation will obtain a copy. Each
time through the loop the index will be incremented by 1. After the
loop is executed for index value 10, the CONTINUE operation will stop
the loop and drop the 2 arguments - now both 10.

Alternatively, the same loop could be written:

 11 1 DO . . . 1 + CONTINUE

Here the index is incremented at the end of the loop, instead of the
beginning. Upon reaching 11 and exceeding the limit of 10, the loop is
stopped.

Naturally loops can be counted backwards, or indeed many other
methods of modifying the index used. It will always terminate on
equality. Of course, such a flexible loop control runs the risk of never
stopping at all. If you increment the index incorrectly, it will happily
run forever. But used carefully, it's a convenient tool.

A refinement of DO . . . CONTINUE is not difficult. If the arguments are
equal to start with, DO can generate a conditional forward jump that
CONTINUE will fix-up. Thus you may do a loop no times. However,
such loops are the exception; but if you encounter one, you'll find the
conditional statement required to protect it most awkward.

– 80 –

4.4.5 Implementation

I hope you now appreciate the need for words that are executed at
define time. I'm sure you're aware of the need for branches and loops.
Perhaps you'll notice that I did not mention labels; the branch
generating words I mentioned, and others you can invent, are
perfectly capable of handling jumps without labels. You saw in the
definition of HERE how the stack can be manipulated to permit
overlapping jumps as well as nested ones. However in a sense we
have many labels, for every dictionary entry effectively assigns a
name to a piece of code.

Now to consider some problems I glossed over. Clearly you must be
able to recognize those words that are to be executed during
definitions. That is, IF, THEN, BEGIN, END, etc. must somehow
override the normal mechanism whereby the control loop would
compile them. I mentioned a switch that distinguished execution from
compilation. Let's establish a similar flag (1 bit) in each dictionary
entry, with the values

 1: execute

 0: compile

applying both to switch and flag.

For a given entry, 'or' the switch and flag together; if either is 1,
execute the word, else compile it.

The above rule is correct, and even fairly efficient. Remember that we
want the control loop efficient! And it's adequate providing all words
that must be executed are built into your system dictionary.
Unfortunately, it's not adequate for the examples I gave above, which
probably means it's inadequate, since those were pretty simple
examples. But complication is part of the fun of programming. So pay
attention and I'll try to explain some problems I don't understand very
well myself.

Editor: I don't understand my concern about
SWAP below. The word ! did not endure. Don't try
to reconcile what I said. I can't.

– 81 –

Consider the definition of HERE I gave above:

 : HERE SWAP THEN ;

Here is one of those imperative words; it must be executed at
definition time. But it is defined as an ordinary definition - and would
be compiled. Even if we managed to execute HERE, the first word in
its definition is SWAP: a most ordinary word, and one that would
certainly be compiled, except that we intend it, too, to be executed.
The next word, THEN, offers no problem - or does it? If we can
execute HERE we'll also execute THEN, since it's imperative. However
we have a problem at the time we define HERE; we'll try to execute
THEN, when we want to compile it. That is, sometimes we want to
compile imperative words; and sometimes we want to execute
ordinary words - even in a definition.

So, what to do? I bet you think I have a solution. Your faith is touching,
but I don't have a very good one. It suffers a small restriction, but a
nagging one: you may not execute a literal in a definition. To phrase it
positively: literals must be compiled inside definitions. Let's see how
it works.

Consider the switch STATE. It's normally 0; ":" makes it 1 to indicate
compilation. Let's define a new defining entry ":!" that acts exactly
like ":" with 2 exceptions:

 It sets the entry flag to 1; to mark an imperative word.

 It sets STATE to 2; to force all words to be compiled. Since the
test in the control loop is to execute if STATE and flag are
equal, nothing will execute.

";" is unchanged; its sets STATE to 0 for both sorts of definitions.
This solves all our problems except SWAP. How do we execute words
that ordinarily would be compiled?

Define a new entry "!". Let it execute the last entry compiled and
remove it from the compilation. Now we can re-write the definition of
HERE as

 :! HERE SWAP ! THEN ;

and it will work. I'll review the rules:

– 82 –

 All words are normally executed.

 Only words flagged imperative are executed in definitions.

 Any word can be made imperative by following it with an "!".

 A definition can be made imperative by using ":!" instead of
":" to define it.

Now the restriction I mentioned should be apparant. A literal cannot
be made imperative with a "!" because it's a double-length instruction
- and the "!" code has no way of knowing that. Oh well, we could set a
field to indicate the length of the last compiled instruction, but it's not
that great a problem. Besides, in that case successive !s wouldn't
work.

– 83 –

4.5 Code entries

I've explained definitions and how they, in effect, compile instructions
for the virtual-computer. What about compiling code for your real
computer then? Of course you can. But you probably won't.

The Basic Principle intrudes. If you add code entries to your program,
you add enormous power and flexibility. Anything your computer can
do, any instructions it has, any tricks you can play with its hardware
are at you fingertips. This is fine, but you rarely need such power.
And the cost is appreciable. You'll need many entries (say 10) to
provide a useful compiler; plus all the instruction mnemonics.
Moreover you'll have to design an application language directed at the
problem of compiling code.

I don't want to down-grade the possibility or value of such efforts, but
you wrote your program in some language to start with. If you need
additional code it's much easier to re-compile your program and add
what you need. Only if you have an application that needs tailored
code. or can profit by providing different code to different users, or
different code at different times, can you satisfy the Basic Principle.

On the other hand, if you start with code entries, you can construct all
the other entries I've been talking about: arithmetic operators, noun
entries, definitions. In Chapter 9 I'll show how you can use code
entries in a really essential role; and achieve a significantly more
efficient and powerful program than by any other means. But except
for that I'm afraid they are marginal.

So how can you generate code? First you need a defining entry that
defines a code entry. The characteristic of a code entry is that it
executes code stored in its parameter field. Thus the address passed
to ENTRY by its defining entry (say CODE) must be the location into
which will be placed the first instruction. This is not DP, because the
entry itself takes space; but is simply DP plus a constant.

Second you need an entry to deposit a number at DP. We have used
such a routine several times, constructing variables and definitions,
but we've not had an entry for it. I suggest the word "," although that
might conflict with your output entries. All it does is move a number
from the stack to the parameter field. Instructions are numbers of

– 84 –

course. You'll construct them on the stack and then deposit them.
Incidently, this is a useful entry - apart from compiling code. You'll
find it useful for initializing data arrays of all kinds.

Now you can appreciate the source of my earlier caution. You'll have
to provide a flock of entries that access code compiled into your
program that we've not needed to reference directly before. For
example RETURN: when you routine is finished, it must jump to the
control loop, just as you built-in entries do. However you don't know
the location of the control loop in core; and it moves as you change
your program. So you must have an entry to generate a RETURN
instruction.

Likewise, if you plan to compile defining entries you must provide
entries that will generate subroutine calls to ENTRY. Other code might
want to access WORD or NUMBER or indeed any facility already
available in your program. Moreover you will have to define variable
entries for those fields you will use: D and F for output; perhaps
STATE and BASE; Basically, the problem is that you must make
available outside your program, all the labels available inside it
already. You must use them enough to justify the effort.

All right, you've done that much. Now you've got to decide how to
construct an instruction. They have several fields - instruction, index,
adddress - that you'll want to put onto the stack separately and
combine somehow. This is easy to do, but hard to design. You
probably don't want to copy your assembler, and probably couldn't
follow its format conveniently anyway. In fact you can do a good job
of designing a readable compiler language; but it will take some effort.
Definitions provide all the tools you need.

For example, you might write a definition that will "or" together an
instruction and address and deposit it. Or if your hardware's awkward,
you can provide a definition that converts absolute addresses to
relative, or supplies appropriate paging controls. Whatever you need,
or want can be readily defined. Done properly, such a compiler is a
substantial application in itself, and if you're going to do it at all, plan
to spend the necessary time and effort.

We discussed conditional statements and loops for the virtual
computer. Precisely the same techniques apply here, with due
allowance for hardware variations. In fact, I originally applied the
stack-oriented branch generation to code for my real computer. Such

– 85 –

statements are really the difference between an assembler and a
compiler. Keep in mind the Basic Principle.

One valuable use of a compiler is the permit the definition of new
kinds of nouns. That is, to construct new defining entries. As an
example consider using the primitive compiler to define instruction
entries as described just above. Or you might want to define entries
that multiply the top of the stack by a constant.

As usual when adding an ability, several distinct entries must
cooperate to provide it. In this case ENTER and ;CODE. Let me
illustrate:

 : UNIT ENTER , ;CODE 1 V LDA , SP MPY , SP STA , NEXT ,

 2.54 UNIT IN

 4. IN

The first line defines the word UNIT. The next line uses this defining
entry to define the word IN (inches). The last line uses IN in a way that
puts 4 inches onto the stack, as centimeters. The 3 lines are
equivalent to

 : IN 2.54 * ;

which is certainly simpler. But if you want to define many UNITs, a
special defining entry is much more convenient and efficient.

The first special word is ENTER. It calls the ENTRY subroutine used
by all your defining entries, but passes a 0 address as the location of
the code to be executed. Look at the definition of UNIT. The word
ENTER is imperative. It generates a double-length pseudo-instruction;
a pseudo-entry for the first half and a 0 constant for the second. At
execution time, the pseudo-entry will call ENTRY to construct a new
dictionary entry, passing the following constant as the address of
code to be executed. The word ;CODE is a combination of the words
";" and CODE. It terminates the definition of UNIT and stores DP into
the address field established by ENTER. Thus the code that
follows ;CODE is the code that will be executed for all entries created
by UNIT. ;CODE knows where to store DP because ENTER is
restricted to being the first word in any definition that uses it;
and ;CODE knows which definition it is terminating.

– 86 –

The restriction on the position of ENTER is unimportant, it may as
well be first as anywhere else. In the case of UNIT, only a "," to
deposit the constant was needed. Other nouns might need more
elaborate processing to establish their parameter field.

You notice I gave an example of code following ;CODE. You see
instruction mnemonics and addresses deposited by ",". I don't want
to explain this compiler language, for it is not relevant for your
computer.

One more suggestion might prove helpful. You might define a new
kind of constant: an instruction. When executed, an instruction
expects an address on the stack, extracts a constant from its
parameter field and constrcts and deposits a completed instruction.
You'll probably have a large number of instructions, and use a large
number. This will save you many deposit entries.

I'm sorry, but I think it's infeasible to attempt an example. If you can't
see how to construct your own code entries from what I've already
said, forget it. The application is extremely machine dependent - and
rightly so. Don't attempt to apply the same code to several
computers; definitions already do that for you. The purpose of code is
to exploit the properties of your particular computer.

– 87 –

5. Programs with memory

You may perhaps grant the value of a program that grows, without
being willing to provide the volume of input required. Naturally it does
little good to have a hundred dictionary entries if you must type every
one. Obviously we need a place to save entries and obviously that
place is disk (or drum, or other random secondary memory).

What is not obvious is how to store entries. It ought to be a Second
Principle that you never save anything on disk without being able to
modify it, but this rule is universally ignored. To simply copy
dictionary entries violates another cardinal principle: never store core
address on disk. You could never modify your program without
chasing down all code addresses.

Fortunately there is a solution. Store on disk the text from which
dictionary entries are constructed. It is a simple matter to divert the
input routine from reading your message buffer to reading disk. This
chapter will show how.

– 88 –

5.1 Organization of disk

There is only one way to organize disk. In the same way that core is
divided into a large number of words, disk must be divided into a
large number of blocks. In the same way that words are the smallest
field that can be fetched from core, blocks are the smallest field that
can be fetched from disk. A block contains 256 words.

A block contains 256 words because that is the size of a 1-byte
address, and because 256 4-byte words hold 1024 bytes which is the
amount of text that can be displayed on a typical scope.

However, here is another instance in which your application and
hardware must play a dominant role. Disks usually have a hardware
block-size that offers advantages. You must choose a multiple of that.
Your application may involve storing data on disk, and you must
choose a block size useful for data as well as text. I say no less than
512 characters nor more than 1024. 128 word blocks have recently
been mentioned; fine if the words are 6 or 3 bytes (characters).

– 89 –

5.1.1 Getting blocks

In trying to anticipate the organization of a random file, certain
principles are obvious. Cross-references between blocks will
probably be wanted. Such references are simple if they use absolute
block addresses; extremely clumsy otherwise. We may use absolute
addresses if we promise never to move a block. This means we can
never pack disk. We agree cheerfully because we didn't want to pack
disk anyway.

This means that as the data in blocks becomes useless, space will
become available in block-sized holes. We must somehow re-use
these holes. Which means that we must allocate, and re-allocate, disk
in block-sized pieces.

All addresses start at 0, block addresses included (otherwise you find
youself forever adding and subtracting 1). However we cannot use
block 0 - for anything. You will find that most addressing errors
involve block 0. If you look at block 0 from time to time you will find
the most amazing things there. You will find block 1 a useful place to
store things you need to remember from run to run. Like the address
of the first block available for re-use - none: 0. And the address of the
last block used - initially: 1.

You will want to copy disk (onto another disk, or tape) for protection.
You need only copy the nuber of blocks used, which is usually less
than half the disk capacity, or else you're pretty worried about space.
If you destroy block 1 (you will) you will have to re-load the entire disk
from your back-up. Never try to recover just block 1, you'll end up
horribly confused.

You may want to put your object program on this disk. Fine! It won't
even take many blocks. You may need to start it in block 0 in order to
do an initial load (bootstrap). OK, but be able to re-load the program
(only) from back-up because you will destroy block 0. Only if you
destroy the block (we'll call it block 1) containing available space
information must you re-load data (all data). Unless you destroy many
blocks. Choose the path of least confusion, not least effort. Re-
loading disk will confuse you, you'll forget what you've changed and
be days discovering it. Much better you spend hours re-typing text
and re-entering data.

– 90 –

So when you need a block, you type a word (GET) which reads block
1, places the block up for re-use on the stack, reads that block, places
the contents of its first word into block 1, and re-writes block 1. The
first word, of course, contains the address of the next block up for re-
use. If no block was availabe for re-use (initially the case), GET
increments the last block used, puts it on the stack and re-writes
block 1. GET then clears your new block to 0 and re-writes it.

Several comments: Notice that GET places its result on the stack - the
logical place where it is available for further use. Notice that blocks
are re-used in preference to expanding the disk used. This makes
sense except for the problem of arm motion. Forget arm motion. You
just have to live with it. This is, after all, a random memory. Don't
neglect clearing the block to 0.

– 91 –

5.1.2 Releasing blocks

To release a block, put it on the stack and say RELEASE. It will read
block 1, extract the next block for re-use, place the stack there and
write block 1; then read the released block and place the old next-
block in the first word. All we're doing, of course, in constructing the
chain of available blocks used by GET. Possibly the block you release
is linked to other blocks. You must release all those, too. A
convenient way is to use the first word as a link field. Then the
available block chain is the same as any other block chain. To
concatenate chains you place the first block in block 1, run down the
chain to the last block (0 in link) and place the old next-block in that
link.

Don't be tempted to maintain a count of the available blocks. Its not
worth the trouble. If you must know, you can count the length of the
available chain.

If you have enough different kinds of blocks, it may be useful to store
a code identifying the block in the first word (or second). You can
then examine all blocks of a certain kind. Available blocks should
have code 0.

How many blocks you can have is probably limited by the disk,
however it may be limited by the field you choose to store block
addresses in. Be careful! You can circumvent the first limit by
modifying your read subroutine to choose one of several disks. You
must re-format all your block addresses (cross-references on disk,
remember) to expand the second.

– 92 –

5.1.3 Reading and writing disk

I'm sure you know how to read disk. However, do not choose a block
size that causes the slightest difficulty: like half a block between
tracks. If you check the GET routine, you'll see that you'll need 2
blocks in core at once. This is a reasonable minimum, it makes it easy
to move things from one block to another. However, you'll have lots of
core left over and you might as well use it for buffering disk;
especially if access time is noticeable.

You'll want a table specifying which blocks are in core: your read
routine can check this table before reading.

But you should not write a block when you change it. Rather mark it
'to be written' in the buffer table. When you come to re-use that buffer,
write the old block first. The principle is that you're likely to change a
block again if you change it once. If you minimize writes you can save
a lot of disk accesses. Of course, there is a trade-off - if your program
crashes, you may have updated blocks in core that aren't on disk. You
should be able to re-start your program and preserve the core buffers.

Of course, multiple core buffers imply an allocation problem. A simple
round-robin is as effective a scheme as any.

If you are going to scan data sequentially, you can save many
accesses by reading consecutive blocks at the same time. However it
is likely that random reads may be interspersed with these sequential
ones. An effective solution is to store the last block in the sequential
area and the number of blocks somewhere for your read subroutine. If
the block isn't in core, and is within the sequential range, it can read
as many consecutive blocks as there are consecutive buffers
available. Don't attempt more than this - ie, making more buffers
available. The net effect is that you will do the best you can with
sequential blocks, subject to interfering constraints.

You will inevitably spend a lot of effort reading-writing disk. But
remember the Basic Principle!

– 93 –

5.2 Text on disk

You will store a lot of text on disk - hundreds of blocks - but this is
probably a small fraction of your disk. The rest is presumably data for
your application(s).

A block that contains text (I mean text to be read and executed by
your program) contains one long character string. If the first word
contains control information, it starts in the second word and extends
until a particular word marks the end (perhaps ;S). This end word is
important because it is inconvenient to have the input routine test for
end-of-block. You quickly learn not to leave that word out.

A block that contains text should have a special name, for you will be
using it often in conversation. I have called such blocks SHEETs -
since the text filled a sheet of paper - and SCREENs - since the text
filled the screen of a scope. Define the word READ to save the input
address, the block and character position of the next character to be
scanned, on the return stack; and reset the input pointer to the block
on the stack and the first character position. Define the word ;S to
restore the original input pointer. Very simply you can have your
program read block 123:

 123 READ

However . . . there's always a however, isn't there. You must modify
your word routine to read the current block before scanning. This is
expensive but essential (of course no actual read is performed if the
block is in core), for the last word executed may have caused a block
to be read that overlaid the block the word was read from. This can
especially occur if one screen directs the reading of others (as they
will). No other solution to this problem has been satisfactory, so
swallow the code - which need not be great.

You will find that with text on disk, the original characterization of
'input' as low volume is strained. You will read many words and do
many dictionary searches. However, on a microsecond computer, you
won't notice it.

– 94 –

5.2.1 Text editing

Never put anything on disk you can't modify! And we haven't
discussed how you get text on disk in the first place. Do not load it
from cards! You're misdirecting your effort toward card reading, and
you had to punch the cards anyway. Type it. The definitions required
to edit the text stored in blocks (SCREENs) is simple.

You must be able to handle character strings surrounded with quotes
(4.1). Given that, I shall exhibit a text editing screen. This is a simple
example of the value of definitions. You may notice it is the first non-
trivial exmple I've given. You should be motivated by now to give it
proper attention.

Naturally, you're going to have to type these definitions twice. Once to
put them into your dictionary; again, to use them to put them in a
screen (bootstrapping). In fact you'll probably type them many times,
but 2 is minimum.

I'm going to exhibit an annotated copy of the EDIT screen I used in a
particular program. It uses system entries whose value may not be
clear. They are borrowed from other aspects of the application.

 0 C1 42 # :R RECORD

Here I am constructing a field description: RECORD is a 42 character
field starting in character 1 of word 0 of the current block
(understood). I'm using blocks that can hold 15 42-character lines; a
word has 6 characters, so that's 15 7-word lines.

 : LINE 1 - 7 * RECORD + ;

Here I'm defining a verb that will convert a line number (1-15) to a field
address. It modifies the RECORD descriptor by changing the word
specification (low order bits). Thus line 1 starts in word 0; line 2 in
word 7; etc.

 : T CR LINE ,C ;

– 95 –

If I type 3 T - I want line 3 typed. T does a carriage return (CR),
executes LINE to compute the field address, and copies the
(character) field into the message buffer (,C).

 : R LINE =C ;

If I type " NEW TEXT" 6 R - I want line 6 to be replaced by the text in
quotes. The leading quote puts a string descriptor on the stack. R
then executes LINE, followed by =C to store the quote string in the
field. The block will automatically be re-written, since it was changed.

 : LIST 15 0 DO 1 +

 CR DUP LINE ,C DUP ,I CONTINUE ;

LIST will list the entire block: 15 42-character lines followed by line
numbers. It sets up a DO-CONTINUE loop with the stack varying from
1 - 15. Each time through the loop it: does a CR; copies the stack and
executes LINE; types the field (,C); copies the stack again and types it
as an integer (,I).

 : I 1 + DUP 15 DO 1 -

 DUP LINE DUP 7 + =C CONTINUE R ;

If I type " NEW TEXT" 6 I - I want the text inserted after line 6. "I" must
first shift lines 7 - 14 down one position (losing line 15) and then
replace line 7. It adds 1 to the line number, sets up a backwards DO-
CONTINUE loop starting at 14, constructs two field descriptors, LINE
and LINE+7, and shifts them (,C). When the loop if finished, it does an
R.

 : D 15 SWAP DO 1 +

 DUP LINE DUP 7 - =C CONTINUE " " 15 R ;

If I type 12 D - I want to delete line 12. D must move lines 13-15 up one
position and clear line 15: It sets up a DO-CONTINUE loop from
stack+1 to 15. Each iteration it: constructs fields LINE and LINE-7 and
shifts them (=C). Then it replaces line 15 with spaces.

That's it. With 10 lines of code I can define a text-editor. It's not the
most efficient possible, but it's fast enough and illustrates many
points: In dealing with small amounts of text, you needn't be clever;
let the machine do the work. The verb LINE is an extremely useful

– 96 –

one; such useful verbs are invariably an empirical discovery. The
verbs ,C and =C are the heart of the method; incidently, they only
work on fields less than 64 characters. Notice how one definition
wants to reference another (R used by I and D; LINE used by all).
Notice how I and D are similar yet different. And notice how a few
verbs eliminate a lot of bookkeeping and let you concentrate on the
problem and not the details.

– 97 –

6. Programs with output

By now I'm sure you're aware that the heart of your program is its
control loop. It not only controls the operation, but also the
philosophy and organization of the program. Let me review its
operation: it reads a word, finds it in the dictionary and executes its
code; failing that it converts it to a binary number and places it onto
the stack; failing that it types an error message.

So far I've ignored that error message; not because it's unimportant
or trivial to implement, but because it's part of a diffcult subject -
output. Logically I oughtn't have delayed discussing output this long,
for even a control language needs output. But as usual in this
program it is involved with other features that we've only just
discussed. I'll leave it to you to implement those features of the
output capabilities I'll present, that your application requires.

Most compilers, and therefore most programmers, regard output the
inverse of input. For example, FORTRAN uses the same FORMAT
statements for output as for input, thereby suggesting that the two
processes are very similar. But are they?

You compose input: you select words and combine them into fairly
complex phrases; your program spends considerable effort
deciphering this input and extracting its meaning. In reply it will not
go through any such elaborate procedure. You'll see that most of its
output consists of the word OK. You are talking to the computer, but it
is hardly talking to you; at best it's grunting.

I maintain that the two processes have nothing in common, that the
computer does not prepare output in a manner analogous to you
preparing input. In Chapter 8 I'll describe a way your program can
compose complex output messages. Although such a technique
might provide a 2-way dialog, it has even less similarity to interpreting
input.

– 98 –

6.1 Output routines

You will need 3 output subroutines; conceivably you could get by with
2. One to type a number of spaces. One to type a number of
characters from a specified location (TYPEN). One to type characters
until it encounters a space (TYPEB) and including the space. This last
depends on your dictionary format, for it is used to type entry words.
Of course, these should use the fetch and deposit subroutines you
use for input.

Let us use the composition of an error message as an example. You
have just typed an input message, the carriage is positioned at the
last character. First you want a space. Then use TYPEB to type the
current word. It caused the error and will tell you where it occurred.
You don't need this for an unbuffered device. Then use TYPEB again
to type a word that describes the error. Avoid long error messages -
you're the one who will wait while they're typed. You can detect a
number of errors, so it's worth your while to devise a routine to
generate them.

After finding an error, you of course quit doing whatever you were
doing. There is no point in trying to continue when you're standing by
ready to correct and start again. However it is convenient to reset
things that you'd probably have to reset anyway. In particular, set the
stacks empty. This is sometimes unfortunate since the parameter
stack might help you locate an error. But it usually is most convenient.
Don't try to reset the dictionary since you're not sure what you may
want to reset it to.

– 99 –

6.2 Acknowledgement

I mentioned in Chapter 3 that you must write subroutines to send and
receive messages. Now I must expand on exactly how you should use
these subroutines.

Recall that input and output share the same message buffer. This now
causes trouble. However it considerably simplifies the more powerful
message routines of Chapter 7. On balance the single message buffer
seems optimal.

First let me call the subroutine that sends a message SEND. It sends a
single line and should add a carriage return to the line, as well as any
other control characters needed, and translate characters as required.
The routine that receives a message is QUERY. It is a routine, and not
a subroutine. QUERY calls SEND to send a message, and then awaits
and processes an input message. stripping control characters and
translating characters as required. It initializes the input pointer IP
and jumps to NEXTW. Notice that your program can send output via
SEND wherever it pleases. However it can only receive input in
conjunction with output, via QUERY. You have no provision for
receiving successive messages without intervening output. This is
exactly the behavior you need, and actually simplifies the coding of
message I/O.

Now let me describe the use of QUERY. Each input message is
terminated with an end-of-message word, a non-printing character
surrounded by spaces. This word has a dictionary entry that types the
word OK and jumps to QUERY. Thus after interpreting each input
message, your program types a brief acknowledgement - OK,
message received and understood - and awaits further input.

Notice that if an input message generates output it destroys itself.
That is, the output is placed in the message buffer irrespective of the
input already there. Thus a word that generates output should be the
last word in a message, since succeeding words will not be seen. In
particular, the end-of-message word won't be seen and the reply OK
won't be typed. This is what you want: OK is only typed in lieu of any
other output.

OK should appear on the same line as the input message, separated
from the last word by a least one space. QUERY should not

– 100 –

acknowledge receipt of a message - as most time-sharing systems do
- with a carriage-return. The only acknowledgement is the OK at
completion of interpretation. Placing OK on the same line helps
distinguish output from input and compresses the conversation,
especially valuable on a limited-size scope face. A user must not type
input until he receives output. It's only important to enforce this rule
with multi-user programs. For this see Chapter 7.

In order to determine whether there is input in the message buffer,
establish a field EMPTY. QUERY should set empty false and each
output generating entry should set it true. Actually output generating
verbs have much in common with each other, and each should jump
to a routine that does the following:

 Drop the stack. Each output verb must have an argument. Its
last argument can be dropped at this point, and the stack
pointer checked against its lower limit.

 Set EMPTY true.

 If NEXT contains NEXTW and SCREEN is 0, jump to QUERY.
Under these circumstances there is no further input available
in the message buffer.

 Jump to NEXT.

Notice that if entries are coming from a definition or from a screen, no
conflict can arise with the message buffer. Only if input is currently
being read from the message buffer is there a problem.

However there are 2 places where source of input is changed. This is
in the code for ";" and ";S". If ";" restores NEXTW to NEXT, it must
guarantee that input is available. That is, jump to QUERY if EMPTY is
true and SCREEN is 0. Likewise, if ";S" restores SCREEN to 0, it
should jump to QUERY if EMPTY is true (NEXT is guaranted to be
NEXTW.

The logic required is summarized in Fig 6.2 and is the price paid for
duplexing the message buffer. One final complication concerns
EMPTY. If true, it states that input has been destroyed; it does not
indicate that output is currently in the message buffer. Output may
have been placed there and already sent. If the message buffer is
empty, type OK before jumping to QUERY.

– 101 –

6.3 Character strings

Everything isn't easy, and this particular feature is my nemesis.
Perhaps a measure of its value is the difficulty of its implementation.
A character string is an awkward entity. Mostly because there is
nowhere to put it. Numeric literals go on the stack in a most natural
fashion. Character strings won't fit, and that isn't what we want to do
with them anyway.

My solution is this. When you see a character string, leave it alone.
Put on the stack a descriptor giving the address of the first charactere
and the number of characters in the string. Skip over the string. That
is, advance the input pointer to its end. You can't do it in quite that
order, of course, because only by skipping can you discover the
number of characters.

What does a character string look like? Of all the ways you might
choose, one is completely natural:

 "ABCDEF . . . XYZ"

A character string is enclosed in quotes. It can contain any character
except a quote, specifically including spaces.

We get in trouble immediately! How do you recognize a character
string? By the leading quote, for course. But do you modify your word
subroutine to recognize that quote? If you do so you may never use a
leading quote for any other purpose. Much better that the quote is a
word by itself, treated like any other dictionary entry, for it can then
be re-defined. But words are terminated by spaces, and I still resist
making quote an exception. So let's type character strings:

 " ABCDEF . . . XYZ"

The extra space is annoying, but in Chapter 8 I will tell you how to
eliminate it without the objections I just raised. So a character string
is started with a quote-space and terminated by a quote.

Remember that we leave the character string alone, merely
remembering where it is. We are talking about character strings in the
input buffer (so far), and we had better use the string before we

– 102 –

destroy it with output or additional input. When it is destroyed
depends on many things, so the best rule is to use it immediately.

What can you do with a character string? I've only found 2 uses. They
are very similar, but part of the frustration of implementing them is to
take advantage of the similarity. You can type a string, or you can
move it to a character field.

To type a string is easy. Define an entry that uses the descriptor on
the stack to set parameters for the TYPEN subroutine.

To move a string is harder, but still easy. You have 2 descriptors on
the stack: on top a field descriptor; below the string descriptor. Set
the input and output pointers, and do a character move of length the
smaller of the 2 field sizes. Space fill the remainder of the destination
field. Notice that you mustn't move more characters than you have, or
will fit. And of course, string descriptors will rarely have the right size.
Truncating a string is not an error condition!

If you can do the above, you can also move one character field to
another. That is, if you make your character string and field
descriptors compatible - which adds to the fun. You might want to
prevent moving a field to a string, but than who cares.

The problem is to reconcile all the above requirements. Not really to
produce optimum code, but even to produce code that is remotely
acceptable in size, speed, restrictions and correct operation.

We've slid into the subject of field descriptors. You might want to type
a character field, and of course the same code should work as for
string descriptors.

– 103 –

6.4 Field entries

We've talked about the different kinds of numbers you might want,
and the different entries these require. However, all these entries dealt
with computation. Another kind of entry is useful for more
sophisticated output purposes. I call it a field-entry because its most
common use is to define a field in a data record.

In addition to the descriptor associated with a variable, a field entry
needs additional parameters that specify the output format. It is
extremely useful to be able to specify a field width for output once
and for all, and then use it automatically on all reports. Also it is
useful to be able to reference the name of the field - which of course
is contained in the dictionary entry.

So a useful convention is that a field entry puts the address of itself -
that is the dictionary entry - on the stack. Recall that a variable entry
places the address of the variable on the stack. If you want the name
of the entry, this address tells you where it is. If you want the format,
this address - offset by some constant - tells you where to find it. And
if you want the address of the field, you can get that too - a process
that is executed automatically for a variable.

These various capabilities require various entries to affect them. You
might define:

 ,NM - type out field name.

 F - extract field width.

 @F - obtain field address.

Depending (as usual) you might be able to make @F compatible with
@. Or make @ automatically work correctly for field entries. You may
want to distinguish addresses of variables from address of field
entries. This would be analogous to distinguishing different kinds of
numbers, and for the same reason - so that the same operations (in
this case probably @ and =) will work on all.

Apply the Basic Principle.

– 104 –

7. Programs that share

It is not obvious, but a program organized as we have discussed is
ideally suited to handling several users simultaneously. All of the
basic problems of interactive processing have been solved by
interacting with one user. The organization is such that all data is, or
can be, stored in the user's dictionary. To distinguish users merely
requires the program recognise the proper dictionary.

Of course the value of multiple users depends upon the application.
There appears to be a correlation between the complexity of an
application and the number of potential users. An application that
deserves a problem-oriented-language my well be of interest to many
users on a continuous basis.

Moreover, once the basic program is available, it is relatively simple
to add other, even unrelated, applications. The ability to control your
vocabulary by reading screens allows a terminal to be used by
different people with absolute minimum effort: each can have a
personal screen that will load his dictionary with the vocabulary he
wants.

Providing the message traffic from any one terminal is low enough, as
is inevitably the case - for we have in effect slowed the computer
down to human speed - we can handle a much larger number of
terminals than can fit in core, hundreds, by storing inactive users on
disk.

However there is a cost, primarily of assuring that re-entrant
programming rules are strictly followed. The additional code required
to switch the computer's attention among users and the additional
core required for disk buffers and user dictionaries demand that a
single user application by de-bugged first. And then the capacity of
the computer multiplied with a multiple-user control routine as the
demand develops. It is all too easy to get bogged down in the
multiple-user controller and never to perfect an application. Or to
perfect a multiple-user control and never to find a demand to justify it.

Given a successful single-user application, I will show how it can be
expanded to many users. If you plan to take this step, there are
certain precautions you should take with your original implementation.
But mind the Basic Principle!

– 105 –

7.0.1 Non-user activities

Each user has a position in the ready table to identify his status. The
computer examines this table to decide what to do next. You may
want to add to the ready table entries not associated with users, but
representing tasks that must be performed by the computer.

For example, if you have to poll phone lines to acquire input, you want
to perform these polls asynchronously with whatever other work
you're doing. Since interrupt routines are best kept small, the task of
translating character sets, checking parity, distributing messages, ets.
should be performed at lower priority. This is easy to do with an entry
in the ready table. The interrupt routine sets a message routine
"ready" and the computer will process it when possible.

Each such independent activity should have a ready table entry and a
(perhaps) small dictionary in which to store its parameters; return
address, register contents, etc. in the same format as a user activity.
In fact these activities are competely equivalent to users, except that
they don't process users. This is significant, for it means they never
generate error messages, they must handle their own errors,
somehow.

If you haven't already noticed, we're now talking about operating
systems. I don't have much more to say on the subject, but there are
other asynchronous activities you might want:

 A clock to handle the timer interrupt and maintain a time and
date in core and disk. It might ready other activities that
relinquished control for a fixed time.

 A routine to write blocks on disk. Periodically it might scan the
block buffers for blocks to copy. (however, writing blocks
when the read routine needs a buffer seems simpler.)

Such activities cost little, and usually provide the simplest answer to
any asynchronous problem. Mind the Basic Principle, though!

– 106 –

7.0.2 Message handling

If you can read input from one user, you can read input from many.
You must get an interrupt that tells you input is available and from
whom it comes. You simple direct it to the proper message buffer.
Likewise with output.

It needn't be simple, but it certainly depends on hardware exclusively.
If you have to poll terminals, it can become very interesting, indeed.
But the problem remains beyond the scope of this book.

If all your users are not core resident, it is better if none of them are.
Then any input message can be written into the message buffer area
on disk. And all output messages read from disk. The fact that some
users might reside in core, causes an unreasonable complication, and
the fact that disk access is fast compared to message transmission
means that to attempt to save such disk accesses is not efficient.

– 107 –

7.1 User control

The fact that you have several users creates a new problem. Of
course the computer can only process one user at a time (we assume
a single processor). But when it's finished with one user, it must
switch its attention to another.

When is it finished with one user? Clearly, if a user is awaiting input
the computer is finished. We are talking about keyboard input, which
will take many seconds to arrive. Similarly if the user is sending
output, the computer may as well stop. Output will take several
seconds, especially if an acknowledgement from the device is
anticipated. It needn't stop. While sending one message, it could be
composing the next. But it's much simpler not to attempt such
overlap. If the user is reading disk, the computer can stop.

I want to define a single phrase to cover these situations. I shall say
that a user relinquishes control of the processor whenever he does
message or disk I/O. This is a voluntary action on his part, and those
are the only times he relinquishes control. In particular, there is no
time quantum that will take control from him. For this reason: With
several users, code must clearly be re-entrant. However, if a user is
promised that he will be allowed to finish what he starts, if he will not
lose control to someone else except when he relinquishes it, the re-
entrant requirements become much less onorous. The program need
only be re-entrant across I/O, which can save a lot of bother.

All right, what happens when a user relinquishes control? The
computer simple scans a table of users to see if anyone else is ready.
The table contains the address of the user's dictionary and a flag:
ready or not? The I/O complete interrupt routines simply mark the
proper user ready. And if no one is ready, the computer scans the
table endlessly - it's got nothing better to do. Naturally, upon program
start-up, no one is ready.

– 108 –

7.2 Queing

You can save yourself a lot of trouble by putting some code in the
user controller. Two subroutines: QUE and UNQUE. When a user
needs a facility that might be in use by someone else, he calls QUE. If
it's available, he gets it. If it's not available, he joins the que of people
waiting for it. When it is released, and his turn, he will get it.

For example, he can't read disk if someone else if reading disk. Or at
least he can't use a particular channel or device. While he's waiting, of
course he relinquishes control. When he's through with the facility, he
calls UNQUE which passes it to someone else.

These are extremely valuable routines, for there are many facilities
that can be handled in the manner; each disk, each line (shared lines),
the printer, block 1 (disk allocation), non-re-entrant routines (SQRT).
An extension will even permit exclusive use of blocks.

Naturally, I have in mind a specific way to implement QUE and UNQUE.
And I caution you, more strongly than usual, that plausible
modifications won't work. I'll try to mention all the reasons.

In addition to the user's dictionary address and ready flag, each user
must have a link field - not in his dictionary, but in user control. Each
facility that is to be protected must have associated with it 2 fields:
the owner, and the first person waiting. The best arrangement is to
have a table of such que-words, one for each facility. If a facility is
free, its owner is 0; otherwise its owner is the number of the user
owning it. A user's number is his position in the table of users,
starting at 1. If no one is waiting, a facility's waiter field is 0; otherwise
it is the number of the user waiting.

If I want a facility and its free:

 I place my number in the owner field and exit.

If it's busy, but no one's waiting:

 I place my number in the waiter field, 0 my link field, and
relinquish control.

– 109 –

If someone's waiting:

 I follow the chain of links starting at the waiter's link field until
I find a 0 link; I place my number there, 0 my link field, and
relinquish control.

When I'm through with a facility (UNQUE):

 IF no one's waiting, I 0 the owner field, and exit.

 If someone's waiting, I move his number to the owner field,
move his link field to the waiter field, mark him ready, and exit.

The whole procedure is simple and efficient. It handles a lot of
potential problems in a reasonable and effective way. Several
comments: The ques will probably be very short. In fact, facilities will
usually be free, unless the computer is over-loaded. A user can not be
in more than one que. However, a user can own more than one facility.
Hence the need for a waiter field with each facility: a que must
descend from each facility, and not from each owner; the two
concepts are independent. You must add to the error routine a loop to
release any facilities held by the current user. Since a user needs to
know his own number in order to que, this number must be stored in
a field in his dictionary, and be set by the re-initialize routine.

It's complicated, it's troublesome, and it's the price you must pay for
multiple users.

– 110 –

7.2.1 Usage

To gain exclusive use of a block, with the exception of block 1, best
handled as an exception, set aside some facility que-words for this
purpose. Find a free one and store the block number it represents
somewhere, then treat that block like any other facility. When the last
waiter releases the block, release the facility que-word for re-use.
Notice that this technique has no effect upon the block itself. It may
be resident in core, or not. Anyone may read or write it. However, no
one else may have exclusive use of it. If all users cooperate to request
exclusive use when the should, it works perfectly - with no extra cost
to ordinary reads/writes. Actually, exclusive use of a block is
necessary only under exceptional circumstances. Block 1 is an
example of such: The block may not be used by anyone else until
another block has been read, and the available space up-dated.

– 111 –

7.3 Private dictionaries

The key to the case of conversion to multiple users is that all required
information about a user is stored in his dictionary - a single
contiguous area of core. He makes extensive use of code that
belongs to the system, and that does not reside in his dictionary. On
the other hand, code unique to his application may reside there. Here
is the first decision that you must make: What belongs in the user's
private dictionary?

Let us look at the arrangement of core. If we choose, and we should, it
follows dictionary format: each entry followed by the code it executes.
Each entry is linked to the previous so that the dictionary may be
searched backwards. Some entries are obviously of interest to all
applications: those that control the stack, that define dictionary
entries, that specify fields such as BASE, CONTEXT, etc. Other
entries are probably of local concern: the names of fields in records,
definitions used to edit text, special purpose code (random number
generator, square root, etc.). At some point you must separate the
system and user dictionaries.

If you establish several user dictionaries, the first entry in each will
link to the system dictionary (Fig 7.1) at the same point. Thus each
user is unaware of any other user, and his dictionary search is
unaffected.

– 112 –

7.3.1 Memory protection

If all users will fit in core simultaneously, we are finished. You divide
memory into the appropriate dictionaries. You should provide
memory protection so that one user cannot damage another. The
stack and dictionary size checking discussed earlier, should be
augmented by checks on the = operator, so that a user cannot write
outside his dictionary, or outside a block he has read. If you have
hardware memory protect, you will find it difficult to take advantage of.
The user must be able to read his dictionary, the system dictionary
and the block buffers; he must be able to write his dictionary and the
block buffers. Several users might want to write the same block
buffer; if not simultaneously, at least consecutively. If your hardware
can help, it's better than any I've seen. But software protection can be
made adequate - except against malicious mischief.

Although a user cannot hurt anyone else, he is certainly capable of
destroying himself. Thus you should have a system entry that will
restore his dictionary to empty, with all control fields reset. Such an
entry will get heavy use, for it is a simple way to start over.

If you have implemented fixed-size entries, you have no links to lead
to the system dictionary. Your search routine must separately search
the user's dictionary and the system dictionary, since not all users
can be contiguous to the system. This should only cost a few
instructions, but is another reason to prefer the linked entries.

If you have multiple chains in your dictionary, each chain must jump
from the user's to the system dictionary. This is only a problem when
re-initializing the dictionary, and can be easily solved by keeping a
copy of the chain heads for the system dictionary.

– 113 –

7.3.2 Controlled access

It would appear that you want the system dictionary as large as
possible to avoid redundancy. That is not necessarily the case. There
are some entries that might go into the system dictionary - except that
you specifically want to deny them to some users. Prime examples
are the GET and DELETE entries that control disk allocation. Misuse
of these words by ignorant users can badly damage data stored on
disk. The best solution is to place the code in the system, without a
dictionary entry. Define a table of entry points into code of this nature.
Then if a user wants to use an entry point, he must first define it,
perhaps:

 17 ENTRY GET 18 ENTRY RELEASE

establishing the words GET and RELEASE with the code identified in
the 17th and 18th table positions. Library subroutines (FORTRAN
arithmetic subroutines) might be treated similarly.

Incidently, this illustrates a general method of protection: In addition
to using a word, the user must define it correctly. Clearly you can
cascade the process. The value of such protection against malicious
mischief depends on secrecy, which is always the ultimate protection.
However even in the absence of secrecy, it provides valuable
protection against inadvertant damage.

– 114 –

7.4 Disk buffers

The fact that you may have several users reading disk simultaneously
has no effect at all upon the disk-access subroutine. It can search the
block buffers and find an available buffer without concern as to who
asked for it. Of course you must have at least as many buffers as
users. In fact, all of core not required for dictionaries might as well be
devoted to block buffers, as left idle. However, if a block is being read,
you should mark the buffer busy some way, so someone else will not
assume it's there before it arrives. If you attempt to read a busy block,
you should relinquish control and try again when you're re-started.

– 115 –

7.5 User swapping

So far we've had all users resident in core. This is by far the best
arrangement for handling a small number of users. The step to
allowing more users than can be simultaneously resident is a small
one philosophically, but can be very difficult to implement. Suppose
we had room for 4 user's dictionaries in core, but we wanted to permit
40 users. Clearly we can store all 40 user dictionaries on disk and
load each one into core when he becomes active. Providing disk I/O is
substantially faster than message I/O there is not even a performance
penalty associated. When a user is awaiting message I/O we write him
out to disk. When he completes his message I/O we read him back
into core. Naturally, we do not move him from core when he is waiting
for disk I/O, since it would take unreasonably long to write him out
and read him back compared to the original delay.

So far there are no problems. The problem arises as to where to read
him back into. We have 4 buffers: if we load users always into the
same buffer we have 4 classes of users, each of which can go into a
single buffer. We are begging for delays at one buffer while another is
empty.

If we are going to the trouble anyway, we should make all buffers
equivalent, and load a user into whichever one is free. However, now
a user's dictionary must be relocatable. That is, any references to his
dictionary must be relative to its origin, which is presumably stored in
an index register. This isn't too bad if we've planned from the start -
way back with a single-user program - to make all dictionary
references relative; it requires almost a complete re-write of the
program if we did not, for all dictionary references, and they're
scattered all through the program, must be indexed.

Actually, since any references to a block must be relative to the
(variable) origin of the block, we aren't introducing a new problem;
merely extending an old one. However, there's another complication.
We now have a real distinction between our 2 dictionaries: the system
dictionary is absolute and the user dictionary is relative. Therefore the
same kind of entry must be treated differently, depending on which
dictionary it's in.

– 116 –

For example, if we have compiled code in the parameter area, an
absolute user dictionary can store the code address in the address
field. However a relative user dictionary must store the address of a
routine that will, in turn, jump into the parameter field. Or else relative
addresses must be distinguished from absolute addresses, perhaps
by size, and treated properly.

To avoid impossible difficulties, you should be careful to write your
single-user program with the following constraints:

 Reserve an index register for a user pointer, the origin of the
user's dictionary, andd use this index. That is, treat the
dictionary as relative, even though you needn't.

 Make all code re-entrant. At least all code within which a user
might relinquish control - which turns out to be most code.

Do this if you have the slightest intention of implementing a many-
user version. This violates the Basic Principle, but we're dealing with
such basic issues as to be worth it.

– 117 –

8. Programs that think

The mystery of consciousness has intrigued philosophers for a long
time. It now seems apparant that just as life is a result of complex
organization, so is consciousness. It is somehow a byproduct of
complex interactions among data. Interactions so complex they only
occur in mammalian brains.

Therefore, one way of investigating the mind is to experiment with
manipulating data. The obvious way to do this is on a computer. We
now have a program with capabilities previously unattainable. Why
not use it in such a way as to probe the realm of 'thinking'? I don't
propose that you become a psychobiologist. But you can have a lot of
fun, and do some really impressive things with simple extensions to
your program.

I will describe a number of entries of unusual capability. If you have
an application that can use them, or if you can create an application
to use them, by all means give them a try. However, the Basic
Principle forbids you including them without a purpose. They are
sufficiently elaborate and sufficiently specialized as to never prove
unexpectedly valuable.

I have had all the entries I describe in a single program. This program
had less than 1500 instructions so it is practical to include everything
in a single program. But I was experimenting, and never found an
application that needed a fraction of them.

– 118 –

8.1 Word dissection

One of the most awkward characteristics of our program is that words
must be separated by spaces. Very often you'd like to suffix
punctuation or operator without an intervening space. And we will
soon add abilities that make prefixing desirable, too.

It is not difficult to modify the word subroutine to recognise
characters other than space as terminating characters. But it is
impossible to provide satisfying generality. Inevitably, you complicate
the word subroutine unduely by considering innumerable special
cases. And you can waste much ingenuity trying to achieve generality.
For example, there are no simple rules that permit all these to be
words:

 HELLO GOOD-BY 3.14 I.B.M. -.5 1.E-3

Likewise, there are no simple rules that separate these strings into
the words intended:

 -ALPHA 1+ ALPHA+BETA +X**-3 X,Y,Z; X.OR.Y

But don't dispair! There is a general solution that can handle all these
cases. It is expensive in time, perhaps very expensive. But it solves
the problem so thoroughly, while demonstrating that no lesser
solution is possible, that I consider it well worth the price. Besides,
the speed of processing text is not a critical factor. We maximize
speed precisely so that we can afford extravagances such as this.

If you haven't already guessed: We read a word terminated by a space,
search the dictionary, convert it to a number. If it isn't a word by this
defintion, we drop the last character and try again. Eventually we strip
off enough characters so that the remainder is a word.

Let me review the cost. We do as many dictionary searches (plus
numeric conversions) as there are letters to be dropped. This
encourages fast searches and quick recognition of non-numbers. It
also encourages minimizing the length of strings that must be
dissected. But let's be practical: The number of occassions when
dissection is convenient are few enough that you can afford the price.
With the exception of compiler source code. But I'm not writing a

– 119 –

compiler, and if you are you can probably make your word subroutine
cope.

There are several things to be careful of: As you drop characters from
the aligned word, you must keep track of your current position within
this word. However, you must also back-up the input pointer so that
you can start the next word correctly. Incidently this requires an initial
back-up over the terminal space that is not repeated.

Backing the input pointer is not possible with unbuffered input. This
is why I suggested that you buffer un-buffered devices back in
Chapter 3. If you aren't going to dissect, apply the Basic Principle.

You must also have a way to detect that you have dropped the last
character: a counter is one solution. Another is to place a space
immediately ahead of your aligned word, and to stop on the space. I
prefer the second, for I find I lack a convenient counter that is
preserved over dictionary search and numeric conversion. But this
means that I must fetch each character before I deposit a space over
it. And this means that my fetch subroutine must operate backwards,
the only place I ever need to fetch backwards. It depends on your
hardware.

There are 2 things we can do to refine this dissection. They are
incompatible and the choice depends on your application: We don't
need to drop characters one-at-a-time. If you have several letters in
succession, or several digits, or perhaps a combination, you might
drop the all and then perform a single search/conversion. This means
that you must examine each character (which suggests the second
termination above). It also means that you must be able to distinguish
alphanumerics from special-characters. This requires a 64-character
table of character type tailored to your particular character set and
application. If your hardware permits, you may be able to use a 64-bit
table - classic trade-off of time vs. space.

However, this means you cannot dissect letter strings and you might
want to. Plurals, for instance, can be easily accomodated by dropping
the terminal 's'. On the other hand, you can easily mis-identify words
by dissecting letter strings: I once dissected the word SWAP: S was
defined, W was defined and my error message was AP ? Perhaps
when dropping a single letter you should replace it with a dash to
indicate a word stem. Or perhaps it doesn't matter if unidentifiable
words are mis-identified.

– 120 –

One further caution: If you are going to dissect, you must not discard
extra characters while initially aligning the word. Your input pointer
must be positioned so that you can backspace it correctly. If you
exceed maximum word size, stop immediately and supply a terminal
space. This means that no single word can exceed maximum size,
which has now become maximum string size.

Another optimization has to do with the size of words in the dictionary.
If you only match part of the word, you may as well start dropping
characters at that point, if number format permits.

What does word dissection mean to a program? How does it help it
'think'? It means that your program can read your mind. It means that
no matter how you type something, the computer will extract the
meaning you intended. It will use the meaning of the longest character
string it can, consistant with a left-to-right scan. It's not infallible: if
you define +1 and then type +1000 it will mis-understand. But if you
use your language consistantly, it will follow.

I would like to be able to say that this ability will impress people. It will
impress you - at least it should. But ordinary people, like your boss,
expect this kind of ability from computers. They are only impressed,
negatively, if they discover its absence.

– 121 –

8.2 Level definitions

I am embarrassed not to know the standard terminology for what I am
going to discuss. I have never heard it discussed and I have never
searched for it. But it must be a standard aspect of compiler writing -
discussed in courses dealing with compilers. If you know the
terminology, you also know most of what I'm going to say: although I
hope I can get you to stretch its application.

Our arithmetic operators have found their arguments already on the
stack. Conventional algebraic notation uses such operators as infixes,
and a left-right scan provides only 1 operand when the operator is
discovered. Consequently the operation must be deferred until the
other operand is available.

Moreover, we have a hierarchy of operations than control when that
other operator becomes available. For example:

 A+B*C

the multiply must be done before the add. Moreover, parentheses are
used to modify the standard heirarchy:

 A*(B+C)

Such a notation is competely equivalent to ours. It offers no
advantages over the operands-preceeding-operator and has some
limitations. But people are accustomed to it and negatively-impressed
by its absence. So I will show you how to provide the capability.

However there is no reason to restrict our attention to the customary
arithmetic and/or logical operators. I will show you some other similar
heirarchies. The capability I describe will handle them all.

Let us establish a new kind of dictionary entry. It is identical to a
definition except that it has a number appended, a level number. So
let's call it a level-definition. The rule is that a level-definition is not to
be executed when it is encountered, but rather placed on a push-
down stack. It will be executed when another definition with a equal or
smaller level number is encountered.

– 122 –

A convenient format for level-definitions is:

 2 :L word . . . ;

The 2 is the level number, taken from the stack. :L declares the next
word as a level-definition. ';' marks the end.

Let's talk about + and *:

 0 :L , ;

 1 :L + + ;

 2 :L * * ;

We have re-defined them in terms of their old definitions, but as level-
definitions. We defined ',' to have some way to stop. Now we can say:

 3 + 4 * 5 ,

What happened? 3 goes onto the parameter stack, + goes onto the
level-stack, 4 onto the parameter stack, * onto the level-stack (since it
has a higher level number than the + already there), 5 onto the
parameter stack. Now ',' forces the * to be executed (since its level
number is smaller) and * finds 5 and 4 on the parameter stack. ',' also
forces + to be executed (with arguments 20 and 3) and then, because
its level number is 0, is itself executed and does nothing.

Clear? I would like to assume you're familiar with this technique, but I
don't quite dare. All I'm really contributing is a way to implement with
dictionary entries a technique usually built into compilers. Perhaps
the cop-out of suggesting you define the arithmetic operators and
work out some examples for yourself. Remember that equal level
operators force each other out, and that a lower level operator forces
out a higher. It is strangely easy to reason out the relative levels of
operators incorrectly.

What do we have so far? Why should you be interested in level-
definitions? You've seen a couple, their definitions are simple. Level-
definitions tend to be simple compared to ordinary definitions. But
given level-definitions you can write a compiler, for any language!
Level-definitions are necessary and sufficient to implement any
context-free grammer, not only the LR-1 grammers at the base of

– 123 –

contemporary languages. Frankly I don't know what to do with the
power they provide, but I'll toss out some suggestions later.

Now back to work. You've seen some level definitions. I hope you've
played with them some. How do we implement them? Well we don't.
Rather we implement a generalization: level-entries. When I found an
application for level-entries I also found out it was cheaper to
implement level-definitions as such than the way I was doing.

Every dictionary entry may be considered a virtual-computer
instruction, as discussed in Chapter 5. We consider a level-entry an
instruction whose execution can be delayed - after the fashion of a
level definition. Why not? A definition is, after all, only a particular
sort of instruction. If it may be profitably delayed, so might other
instructions.

I'm sorry if it seems complicated. It is! It's going to get more
complicated - you aren't getting something for nothing. But it's worth
it. However, notice that everything we're doing now builds on
everything we've done before. Notice that the concept of a special
sort of entry depends on having a dictionary available; and the
extension of definitions to include level numbers depends on having
definitions. We are gradually building a tree and are in the higher
branches. We might not depend on all the lower branches, but we
have to have some.

How do you execute a level-entry? Exactly the same as any other.
However, the first thing the level-entry does is execute the LEVEL
routine, to give it a name, with its level number as parameter. LEVEL
tests this level number against the level-stack. 3 cases arise:

 It may place the level number and entry on the level-stack
(higher level entry) and RETURN.

 It may replace the top of the level-stack with this entry, and
execute the old top.

 If the level-stack is empty, and the level is 0, it will execute this
entry.

All 3 cases are required!

Before actually executing an entry from the stack, LEVEL must set the
SOURCE address to reference another routine, FORCE. You recall

– 124 –

that your main control loop obtains its next entry either by reading a
word and searching, or by fetching from a definition. Well here is a
third source, the level-stack. As for a definition, the old value of
SOURCE and the virtual-IC must be saved - on the return-stack.

When you finally force execution of a level-entry, you must remember
that it has already been executed, and immediately jump to LEVEL.
This re-execution must start at a different place, 1 or 2 instructions
below the routine address, perhaps. Or you might include the re-start
address as a parameter, and keep it in the level-stack.

When a level-entry is done, it will RETURN and your control loop will
go to FORCE. The only way you can get to FORCE is by completing a
level-entry. Its function is to check the level stack and see if any other
entry can be forced off by the one on top. 3 cases arise:

 It may leave the level-stack alone (higher level on top), and
restore SOURCE and virtual-IC from return-stack, and
RETURN.

 It may execute the lower entry, replacing it with the top - thus
dropping the level-stack.

 If there is no lower entry, and the level is 0, it will execute the
top entry - thus emptying the level-stack. At this time it will
restore from the return-stack.

Let me emphasize the importance of the return-stack, and the
necessity of saving SOURCE. If a level-entry is in fact a definition,
SOURCE will be reset yet again. It may be some time before we return
and encounter FORCE once again. For in fact, a level-definition may
occur within a definition; and it may execute other definitions - indeed,
other level definitions. The whole process may become
incomprehensibly enmeshed, and indeed it does in practice. But it will
sort itself out. The beauty of definitions, level-definitions particularly,
is similar to that of recursive functions. You need consider only the
simple case when making the definition; complex cases take care of
themselves.

Now you should be able to implement level-entries, definitions among
them. What can you do with them?

 You can define the customary arithmetic operations: + - * /
MOD **.

– 125 –

 You can define the customary logical operations: OR AND
NOT IMPL.

 You can define infix relations: = < > <= >= /=.

 You can define an infix replacement: = := (one that works in
either direction).

 You can define all the above.

It depends on your application.

 You can define words like PLUS MINUS TIMES DIVIDED-BY
EQUALS; an English language arithmetic.

 You can define phrases like MOVE . . TO . . or DIVIDE . . INTO . .
or ADD . . TO . . A COBOL language arithmetic.

But let me mention 2 particular uses:

 Consider a statement with the form
o IF relation THEN statement ELSE statement ;

Define IF so it will be forced out by THEN and generate a
conditional branch. Define THEN so it will be forced out by
ELSE and fix-up the adddress left dangling by IF. Define ELSE
so it will first generate an unconditional branch, then force out
THEN, and then await being forced out itself. Define ; to force
out ELSE and fix-up the forward branch.

With a few statements you can implement any such compiler
construct.

 Consider a statement like
o 1800. FT / SEC ** 2

Define a kind of entry UNIT that puts a constant on the stack
immediately and acts like a multiply when it's forced to. Define
/ to put a 1. on the stack immediately and divide when it's
forced to. Define ** as an infix, and FT and SEC as UNITs.

This expression and any others you construct will be evaluated
correctly.

– 126 –

I pass the ball to you. If you have an application that could profit from
a natural language input format, you have the capability with level
definitions to implement it. For example, it would not be hard to teach
your program to solve the problems at the end of a high-school
physics text.

Keep in mind, that level-entries do not enhance the power of the
computer. They merely let you specify instructons in what, to the
computer, is an unnatural order. You are well advised to get your
application working, and then to append a fancy control language.

How does this relate to a program 'thinking'? Solely by deferring to
the human-oriented format of control languages. Not even this is
impressive to anyone but us! And even how impressed are you by
FORTRAN's expression evaluator any longer?

– 127 –

8.3 Infinite dictionary

I would guess that your dictionary will average several hundred
entries. Even a small amount of data seems to generate a large
number of fields - to mention one source. However some applications
need much larger vocabularies. Perhaps you need to identify one of
10,000 customers; or maybe you want the symbols for 104 elements
available; or the names of 1000 approved additives.

Clearly such volume must be stored on disk. Also clearly, you don't
want to have to search disk explicitely. There is a gratifyingly effective
solution: If you can't find the word in the core dictionary, and it's not a
number, search a block on disk. Now the question reduces to: Which
block?

Establish a field called CONTEXT. Treat it like you did a block
address: it both identifies a block and suggests where it might be in
core. Search this block. By changing CONTEXT you can search
different disk dictionaries. By linking several blocks together, you can
search larger amounts of disk; or search several dictionaries in
sequence.

You can afford to search a fair amount of disk, because if you can't
find the word you're going to generate an error message. A delay in
typing that message to make sure you can't find the word, is an
excellent investment. Still for really large vocabularies - thousands of
entries - such an approach is inadequate.

For very large dictionaries, scramble the word into a block address
and search that block. By that I mean compute a block address from
the letters in a word, just as we did for multiple chains in the core
dictionary, though you'll probably want a different algorithm. You can
search one of a thousand blocks and be assured that if the word is
anywhere, it's in that block. Because you used the same scramble
technique to put it there as you use to find it. Since many words will
scramble into the same block, you of course search for an exact
match. Again, just as in core. With such a large disk dictionary, you
want to be careful of several things. First, once you choose a
scrambling algorithm you can never change it; so make a good
choice before you define lots of entries. Second, try to keep the
number of entries roughly the same in all blocks; and roughly equal to

– 128 –

half the capacity of a block - to compensate for the first "roughly". Or
else provide for overflow by linking blocks together.

Such a disk dictionary can be really impressive - even to non-
computer folk - because you have fast access to a prodigous
vocabulary. Fast means you can search tens-of-thousands of entries
in a single disk access.

What do disk dictionary entries look like? I have found that 2 fields
are sufficient: the word field, the same size as the core dictionary
word field; and a parameter field, 1 word long. If you find a match on
disk, you put the parameter on the stack. Remember that you can't
afford to store absolute addresses on disk, so you can't have an
address field as in core. You could provide a coded address field, but
it seems adequate to treat disk entries as constants.

For instance you can name blocks. When you type the name of a
block its address is moved from the parameter field onto the stack.
That is an excellent place for it, because if you type the block number
itself that's where it would be placed. You can use block numbers and
block names interchangeably. Thus when you type an account
number the block associated with that account is placed onto the
stack, whereupon you store it into the base word that its fields
reference. An illegal account will cause an error message, in the
ordinary way. Or you might name the instructions for your computer.
Then typing its name will place a 1-word instruction on the stack,
ready for further processing.

Although I spoke of account numbers, notice that you can't number
blocks. That is, the name of a disk dictionary entry cannot be a
number. For if you type a number it will be converted onto the stack,
and never sought on disk. And you must attempt to convert before
searching disk or you'll search disk for every literal you type. But then
"numbers" often don't look much like the numbers defined by
NUMBER. They tend to have embedded dashes, letters and such; or
else you can prefix a letter or suffix a # character.

How do you put an entry on disk? A special defining entry:

 0 NAME ZERO

– 129 –

analogous to CONSTANT. Alternatively you might set a flag and let
the dictionary entry subroutine decide whether to use disk or core.
This latter is preferable if you have several dfferent kinds of entries
that might go either to disk or core.

You will also need a way to forget disk entries:

 FORGET ZERO

FORGET must call WORD as defining entries do, since this is a non-
typical use of the word ZERO. When it finds the entry, it simple clears
it without trying to pack. Your entry routine should first search disk to
see if the word is already there. You don't want multiple definitions on
disk, even though there're useful in core. Then it should search for a
hole. If it finds the word already there, or if it can't find a hole? You
guessed it, an error message.

Let's talk about a refinement. With a thousand names on disk it's easy
to run out of mnemonics. Let's re-use the field CONTEXT: after you
scramble the word into a block address, add the contents of
CONTEXT and search that block. If CONTEXT is 0, no difference. But if
CONTEXT is non-zero, you're searching a different block. If CONTEXT
can vary from 0 to 15, you can have 16 different definitions of the
same word. You'll find the one that had the same value of CONTEXT
when you defined it. If there is no entry for a word under a given
CONTEXT, you won't get a match. A block containing a definition for
the same word under a different CONTEXT won't be searched.

For example, stock numbers might look the same for different sales-
lines. By setting CONTEXT you can distinguish them. You can use the
same name for a report screen that you use for its instruction screen;
distinguish them by CONTEXT. If you're scrambling anyway, you may
as well add in CONTEXT (modulo a power of 2); it costs nothing, and
vastly extends the universe of names. In fact, you can use CONTEXT
in both the ways we've discussed, simultaneously. For as an aditive
constant it tends to be small; and as a block number, large. So your
search routine can decide whether to scramble or not based on its
size.

A problem arises if you plan to dissect words. All those extra
dictionary searches are augmented by disk searches and their
attendant disk accesses. Several solutions are possible: Scramble
with only the first couple of characters, so at least the disk searches

– 130 –

are in the same block - which will be in core. Or use only non-zero
values of CONTEXT and let 0 inhibit the disk search. That is, make
dissection and disk searching mutually exclusive. As is often the case,
the problem is serious only if you aren't aware of it.

– 131 –

8.4 Infinite memory

Of course you can't really have infinite memory. Not even unlimited
memory. But you can access directly the entire random memory
available to your computer. A small augmentation of the field entries
introduced in Chapter 4 will do it. I postponed the discussion to here
because it has no particular connection with output, and because it's
impressive enough to relate to 'thinking'.

The problem of what to do with infinite memory, I leave up to you. You
will have to organize it somehow. Examine different parts of it, move
fields around, what you will. All I can do is show you how to eliminate
any explicit reference to disk.

Let's include in our field a parameter that points to a disk address.
The field is assumed to be relative to that address; that is, contained
in the disk block. The program will automatically read the block to
obtain the field. Of course a number of fields will point to the same
block address.

Before you start objecting, let me rush on. Stored with the block
address is the location of the core buffer that block last occuppied.
So the program needn't actually read disk, or even search core
buffers for the block, unless the block has been overlaid. Hence
repeated accesses to the same block cost little.

Several trade-offs are involved: You should have a generous number
of core buffers to minimize overlays. You should choose you block
size with this use in mind. Accessing such disk-resident fields is
slower than if you deliberately read the block into a fixed location and
access it there; but the ease with which you can address data
scattered on disk, and the beauty of being able to forget that some
data is on disk and other data in core, to me make up for the loss in
speed. Besides, it's your problem to implement the feature in a way
that is efficient.

Suppose you want to scan a portion of disk. All you have to do is
define the fields and establish a loop: start with the first block
address, store it in the base location where the fields expect it and
increment it each time through the loop. All right, your advantage is
marginal. All you save is a read instruction. But if that block links to
another one, all you need do is store the link in the base location for

– 132 –

other fields, and forget that a link is involved. If you access fields in
the link it will automatically be read. If not, it won't be. The more
complex your data, the greater the advantage.

Of course, you don't have to worry about writing blocks either.
Chapter 6 talked about flagging blocks that need writing, rather than
writing them immediately. Pays off here! If you change a field, its
block will be re-written; if you don't, it won't. Just make sure that
when you say GOOD-BY your program writes all changed blocks.

You can make these field entries identical with those accessing core,
by making the pointer to the base address 0. If you don't point to a
disk address, you must mean core.

Notice that this addition of a base to a field entry defines a data
structure very much like the levels in COBOL's data division: 01 level
corresponding to the disk address; 02 levels to the fields themselves.
For a few extra instructions you can add higher levels: If the pointer
does not reference a disk address, but another field description, you
have the equivalent of 03 level, etc.

Consider how the field reference actually works. In the field entry you
have a word parameter that tells which word the field is in (or starts
in). If this field references another, you add the word parameters
together. When you find the core address of the disk block, you add
the word offset and voila': you have the word you want. Going
through intermediate fields has little advangage unless the
intermediate fields change. Why not? By incrementing a base field
address, you can access different rows of a matrix or different
records in a block. Or you can access different sub-records of a
record. Very useful! It's enough to make me think COBOL is a pretty
good language. Of course you can do the same thing with core fields,
you just never point to a disk address at the very end.

A word of warning! Don't try to gain efficiency by putting the core
address of a block in an index register. It's too hard to keep track of
which block, if any, the index is currently identifying. You simply have
to go through a fair bit of code to provide useful generality. Of course,
you hardware might have some special features: maybe
microprogramming? Even indirect addressing might be helpful.

Given such elaborate addressing capabilities, you can use some help
debugging your screens. Memory protection is easy to provide, and

– 133 –

very helpful. Include with each field entry a maximum size (in words)
for that field. When you calculate an address that purports to be in
that field, make sure it is. The upper limit for the final block reference
is of course the block size. The upper limit for a core reference is also
known. A simple error message stating OVERFLOW will catch trouble
before it has a chance to propagate.

You might want to implement an additional kind of field entry. This
one has a link. If you make a reference that lies outside the field, it will
follow this link and attempt to satisfy your request. In particular, a
record entry that points to a block: If you increment the record offset
beyond the end of the block, you can pick up a link from the block,
change the block address, reset the record offset and access the new,
overflow block. Automatically! This makes for a very attractive
implementation of variable length records (actually blocks), providing
the records are composed of fixed-length pieces.

If you want such an overflow capability, you must provide a way of
constructing the links. You need an entry that will search a block
(chain) for a record-size hole - of course all holes are the same size. If
you can't find a hold, you must GET a new block, link it, and then you
have a block full of holes. A hole should be identified by a 0 in the first
word, character or bit, so that when GET clears the new block to 0, all
record positions are empty. Naturally you have no guarantee that
overflow blocks will be near each other. Almost certainly they won't
be. Either you don't care, or you initially allocate each block chain
sequentially, up to mean size.

It is easy to remove a record. You create a hole by storing 0 in the first
word. It is hard to discover whether by doing this you have caused an
empty block which can be un-chained. Unless you expect your data to
shrink and need to recover space, don't bother. How can data shrink?
Also, don't move records around - to squeeze out holes perhaps. Just
as we want to use absolute block addresses, we want to use absolute
record addresses (if we use record addresses at all).

So, we can have automatic access to fields scattered all over disk and
in variable size records at that. Basic Principle!

One thing! If field entries can address other field entries, you need
some way to distinguish a field from a disk address. I have no
suggestion.

– 134 –

9. Programs that bootstrap

It's sometimes hard to appreciate how it all gets started. We have
been tacitly assuming that your computer has a compiler and that you
used it to compile your program. But how did your compiler get
written? Today the answer is certainly that it was prepared by another
compiler on another computer. We've achieved parity with the
biological maxim: all life comes from previously existing life. For
practical purposes, all programs are prepared by previously existing
programs.

Although this makes life somewhat easier for compiler writers,
especially when the target computer isn't built yet, it has a drawback.
You can never drop your ultimate dependence on the pre-existing
program. If you use a compiler that generates certain instructions, or
assumes a certain disk format, you are constrained to be compatible.
Consider that a simple version of our program, providing it includes
compiler verbs, is perfectly capable of compiling itself. It can do this
with greater freedom than the standard compiler, but more important,
you can then discard the standard compiler.

In Chapter 1, I discussed the sad state of software quality. Although
we can prepare an excellent object program, we are obliged to
maintain it as a source program for an unhappy compromise of a
compiler. I must admit that this is the most expedient way to get the
program started. However, I question whether it is most efficient over
the long haul of re-compiling and modifying.

Let us imagine a situation in which you have access to your computer.
I mean sole user sitting at the board with all the lights, for some hours
at a time. This is admittedly an a-typical situation, but one that can
always be arranged if you are competent, press hard, and will work
odd hours. Can you and the computer write a program? Can you write
a program that didn't descend from a pre-existing program? You can
learn a bit and have a lot of fun trying.

– 135 –

9.1 Getting started

First you'll have to know some things: how to turn the computer on
and off (odd hours), how to enter and display data from the console
switches, and how to avoid damaging data stored on disk. You may
have to corner operators or engineers to discover such information; it
is so rarely of interest it doesn't get written down.

So now you're face to face with the computer. What do you do? First
an exercise. Initialize the interrupt locations in such a way that the
computer will run, will execute an endless loop, when you start it.
OK? Then modify your loop so that it will clear memory. OK? You've
probably learned a lot.

Now we're going to start for real. We're going to start building your
dictionary, even though you can't use it yet. You must choose your
entry format now; variable-sized entries are required, but you can
decide about word-size and layout. The first entry is SAVE; it will save
your program on disk. Lacking a control loop you'll have to jump to it
manually, but at least you can minimize re-doing a lot of work. The
second entry is LOAD; it will re-load your program from disk. You
may have a hardware load button, if you can store your program
compatibly with it, fine. You might want to punch a load card, to
provide initial load otherwise. But it's always convenient to be able to
re-start from core.

The third entry is DUMP; it will dump core onto the printer. It needn't
be very fast to be a lot faster than looking with the switches. This
probably isn't a trivial routine, but it oughtn't take more than a dozen
instructions. You might want to postpone it just a bit.

So, with a couple hours work - providing you read the manual first -
you have an operating system (SAVE, LOAD) and debugging package
(DUMP). And you know a lot about your computer.

– 136 –

9.2 The roots

Lest you worry, I have gone through this process myself. I've done it
twice, actually, and I'm not describing it as I did it, but as I now think I
should have done it. So you've room for improvisation.

In a sense we're building a tree. We've now reached a point where we
can start making the roots. For a while everything will be concealed
but we'll eventually reach daylight and start on branches.

I presume you can LOAD your program and DUMP core. It's time to
get away from the switches and use the typewriter. So set up a
message buffer from which you can send and receive text.
Presumably when awaiting text your program sits in an endless loop
somewhere. Learn to recognise that loop. You'll spend most of your
running time there and it's reassuring to know that everything's
allright.

No dictionary entry is associated with message I/O. You could define
one, but we won't need it. In general we will construct entries only
when they'll be needed. We can always add any entry we need, later.

Your're doing great. Now establish the stacks, the dictionary search
subroutine and entries for WORD and NUMBER. Be very careful to do
it right the first time; that is, don't simplify NUMBER and plan to re-do
it later. The total amount of work is greater, even using the switches.

Now write a control loop. You might test the stack, but jump to an
unspecified error routine. And run. DUMP is still our only output
routine, but you should be able to read and execute words like DUMP,
SAVE and LOAD.

Write an entry for ENTRY, the subroutine that constructs dictionary
entries. I haven't specified the code executed for WORD, NUMBER
and ENTRY. These are subroutines, and the only time we'll use their
names is when compiling code. So they should execute code that
generates a call instruction. We haven't written that code yet.

Now define the code-entry, the word that names code; and the deposit
word, the word that places the stack in core. Now you can type octal

– 137 –

numbers and store them in the dictionary. No more switches. You can
also construct new dictionary entries, for code.

– 138 –

9.3 The branches

We've reached a milestone. The invisible work is done and we can
have a written record of what remains. There are many things to do
and the order not so obvious. We've reached the position of having a
source language, and we need to be able to modify it and re-compile
without re-doing everything. Here we're forced to generate temporary
code that will become obsolete, but it will save a lot of effort.

First a READ and WRITE entry to provide disk-access to a single core
buffer. Then a simple T and R to type and replace lines of text in that
block. These entries will later become obsolete, so keep them simple.

We now need the READ and ;S verbs for screens. Specify a block
number and we can read the text in that block.

Now we write screens that provide definitions, an improved compiler,
improved block handler, improved text-editor and we can proceed
with our application. We want a REMEMBER entry. We haven't needed
it so far bacause we could always reach in and reset the dictionary
manually.

I'm sure you've noticed the difficulty with modifying code in the root.
A powerful tool is to be able to shift the dictionary in core. If the root
doesn't use absolute addresses, define a SHIFT entry and use it.
Otherwise minimize the number of absolute addresses and define a
more elaborate SHIFT verb that adjusts them.

Be careful SAVEing your program. Keep a back-up of your old version
before SAVEing a new one, just in case.

– 139 –

Figure 1, Figure 2, Figure 3

– 140 –

Figure 6.2

– 141 –

– 142 –

– 143 –

– 144 –

